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Abstract
Onthe basis of the spin fluctuation mechanism, magnetic properties of itinerant-
electron weak ferromagnets are discussed, for the wide temperature range
from the ground state to the paramagnetic state, explicitly taking into account
the effects of zero-point quantum spin fluctuations. Particular attention is
focused on properties of the ordered phase. The temperature dependence of the
spontaneous magnetic moment, for instance, is quantitatively analysed in close
comparison with experiments. Itis also shown that the fourth-order expansion
coefficient of the free energy in powers of the static magnetic moment is
temperature dependent, and therefore magnetic isotherms are not so simple as
was originally anticipated in the Stoner—Wohlfarth theory.

We explicitly examine the effect of the spin-wave mode on the transverse
spin fluctuation amplitude, and show that this effect is crucial for the proper
theoretical description of magnetic behaviours in the ordered state.

1. Introduction

Collective spin fluctuations play predominant roles in the magnetic properties of itinerant-
electron magnets, while the single-particle excitations have minor roles. Spin fluctuation
theories based on the above picture have been quite successful in explaining and predicting
various interesting magnetic properties of the system (Moriya 1985, Lonzarich and Taille-
fer 1985, Takahashi 1986). However, there are still unsolved problems. One long-standing
problem is related to the description of the ordered phase below the Curie tempé&tature
The difficulty arises because it is sometimes not so easy to take into account the restriction
caused by the rotational invariance of the system in the spin space. A naive treatment (see,
for instance, Murata and Doniach (1972) and Yamada (1975)) leads to a fictitious first-order
phase transition. In the self-consistent renormalization (SCR) spin fluctuation theory (see,

0953-8984/01/296323+36$30.00 © 2001 IOP Publishing Ltd  Printed in the UK 6323


http://stacks.iop.org/cm/13/6323

6324 Y Takahashi

for instance, Moriya 1985), the temperature dependence of the spontaneous magnatization
for weak itinerant magnets was originally derived by taking into account only the transverse
modes of the thermal spin fluctuations with respect to the direction of the static uniform mo-
ment (Moriya and Kawabata 1973a, b). As the typical temperature dependence of the squared
spontaneous moment, a qualitativd-dependence at low temperature andd’> — 74/3)-
dependence around the critical temperatfiravere predicted and were later confirmed by
experiments. On the other hand, based on the single-particle picture, the Stoner—Wohlfarth
theory (Stoner 1936, Wohlfarth 1968) predicted an ovef@f — T2)-dependence below,
(Edwards and Wohlfarth 1968). The observed temperature dependence was sometimes sim-
ply fitted with the Stoner—Wohlfarth theory. No quantitative comparison with experiments,
however, has yet been made on the basis of the spin fluctuation mechanism.

If we take into account both the transverse and the longitudinal components of the fluctu-
ations required by the rotational invariance, we have to solve two coupled integro-differential
equations simultaneously, each of which is related to the condition determining the transverse
and the longitudinal components of the magnetic susceptibilities. Numerical solutions of these
equations show that the first-order discontinuity is reduced or will one hopes be eliminated
(Lonzarich and Taillefer 1985). The nature of the solution has not been fully discussed yet.
To save computational effort, an interpolation scheme for the mode-coupling effect was also
proposed by Lonzarich and Taillefer, giving a smooth evolution between the ground state and
the critical point without showing a first-order transition. Its theoretical basis is, however, not
too clear.

The spin fluctuation theories mentioned above only take into account the effects of thermal
spin fluctuations. Particular interest has been shown in the effects of renormalization on the
second expansion coefficient of the magnetic free energy in terms of the uniform magnetization
M, i.e. the temperature dependence of the magnetic susceptibility. Therefore the magnetic
equation of state has not so far been discussed very thoroughly. Although the effects of spin
fluctuations are included in the description of finite-temperature properties, the magnetic field
dependence a¥ is simply assumed to be given by using the Stoner—Wohlfarth theory in the
ground state and it is determined by the density-of-states curve around the Fermi energy. The
SCRtheory particularly emphasizes the significance of the self-consistenttreatmentin deriving
the Curie—Weiss-like temperature dependence of the magnetic susceptibility. This means that
we have to take into account the change of the spin fluctuation spectrum against temperature
and the external field variations. The same spectral change ought to have some effect on
the quantum amplitude. However, it is simply assumed to be negligible. Though the spin
fluctuation effects are included at finite temperature, the ground state is still assumed to be well
described in terms of the single-particle density of states like in the Stoner—Wohlfarth theory.

| first pointed out the significant role of quantum spin fluctuations in the magnetic
properties of weak itinerant-electron magnets. According to my idea, the ground-state and
finite-temperature properties have to be treated within the same theoretical framework. In
order to implement this idea, an interesting approach has been proposed. Itis based on solving
a single equation containing both the transverse and the longitudinal magnetic susceptibilities.
Because the quantities are related to each other through their differentials with respect to the
magnetizationV, the magnetic equation of state is obtained by integrating the equation by
regarding it as a first-order differential equation.

The purpose of this paper is to present a theoretical description of magnetic properties
of weak itinerant-electron magnets by studying the magnetic equation of state throughout a
wide temperature range. In this way we can discuss their temperature and magnetic field
dependence from a unified point of view. Our main interest is in giving a consistent and
satisfactory description of properties in the ordered state by solving the differential equation.
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Although an attempt has been made to find solutions by using their continuation from the high-
field side (Takahashi 1992), the situation is still not very clear compared with the paramagnetic
cases because of the difficulty of finding the initial condition of the equation. In this regard,
we explicitly examine the roles of the spin-wave modes in the ordered state. In most previous
treatments this effect is simply neglected; the assumption is made that it is very small. We
show here how to cope with the difficulty involved in determining the initial condition by
taking explicit account of the presence of spin-wave modes.

The absence of a fully consistent theoretical treatment of the ordered state is the reason
that quantitative comparisons between theoretical predictions and experiments have not so
far been made on the basis of the spin fluctuation mechanism. In the present paper, various
observed temperature and external field dependences are quantitatively analysed on the basis
of the results of this paper. In our previous studies we have already given a prescription
for dealing with magnetic properties in the paramagnetic phase. In order to achieve a self-
contained presentation, we will duplicate some of our former arguments here in referring to
experimental results.

In the following we represent the magnetizatomper magnetic atom in units @fz and
the external magnetic fieldin energy units, i.e.,

M = Noupo h=gupH

where N is the number of magnetic atoms in the crystal gnd the gyromagnetic ration,
assumed to be 2. The magnetic susceptibjliis measured in units af . 5)?, given in the
present units by

x/No = 0c/(2h).

2. Theoretical framework based on the spin fluctuation mechanism

According to Takahashi (1986) the present study is based on the following sum rule:
(57) = ({557} 72+ 657)7) o/ @D
where
85 =S ={87) o =2(5])

which indicates that the total spin fluctuation amplitude is almost constant (see also Takahashi
1990, 1992, 1994, 19974, b, 1998, Takahashi and Sakai 1995, 1998). At the outset, it is worth
recognizing that the spin fluctuation amplitude is not so small when the quantum componentis
included, as was confirmed experimentally. This is why we employ the sum rule and do notrely
on the expansion in terms of the amplitude of the spin fluctuations. If we extract the thermal
spin fluctuation amplitude, we find that it increases with increasing temperature gbase

was actually observed in neutron scattering experiments on MnSi (Ishikawd985). The

total amplitude, however, does not seem to show a monotonic increase. We show in figure 1
the temperature dependence of the total spin fluctuation amplitude for the same compound
MnSi as was observed in the neutron scattering experiment (Ziebetk982) in comparison

with the calculated thermal spin fluctuation amplitude. The discrepancy between experiments
and the theoretical curve at low temperature clearly shows the presence of a sizable quantum
amplitude. The weak temperature dependence of the total amplitude compared with the
thermal component indicates that the quantum amplitude is also temperature dependent. The
effect of zero-point spin fluctuations has also been considered by expanding the free energy in
powers of the spin fluctuation amplitude up to the fourth-order term (Solontsov and Wagner
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Figure 1. The temperature dependence of the observed spin fluctuation amplitude for MnSi (solid
circles), using an energy resolution of 12 THz. The solid line represents the calculated thermal
spin fluctuation amplitude.

1994, 1995). It is however not so clear why such an expansion in terms of large fluctuation
amplitudes is justified when the quantum component is included.

We have already derived various interesting consequences of the conserved amplitude
(2.1), which were confirmed by later experimental investigations (Yoshiata/d 987, 1988,
Shimizuer al 1990, Nakabayaslar al 1992). Before we present our theoretical framework,
we describe the behaviour of the spin fluctuation spectrum and amplitudes for weak itinerant-
electron magnets.

2.1. Spin fluctuation spectrum

From the fluctuation-dissipation theorem of statistical mechanics, the spin fluctuation
amplitude is expressed in terms of the response of the system, i.e. in terms of the imaginary
part of the dynamical magnetic susceptibilifg, ). For instance, in the paramagnetic
phase, it is represented by

3 * dw
<512> — N_g%:/_m > coth(Bw/2) Im x (q, ®)

3 g
= >3 2 1+ 210) Imx(q. ). (2.2)
NoZG Jo 7

That is,
(s)=(s7),+(s?), (2.3)
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where we have defined quantum (zero-point) and thermal amplitudes, denoted by the subscripts
Z andT, by decomposing the factor cd@pw/2) into a constant term and the Bose faat(p)
as follows:
1
efo — 1’
In the case of weak itinerant-electron ferromagnets, the imaginary part of the dynamical
magnetic susceptibility is given by the following double Lorentzian spectrum in the small-
q. w space:

coth(Bw/2) = 1 + 2n(w) n(w) =

ol
Im x(q, w) = —1 2.4
x(q, o) X(Q)a)2+rg (2.4)
where
_ x© _ 2, 2
X(Q)_W Iy =Togq(k”+q°)

where k represents the inverse of the magnetic correlation length. The aptinear
dependence of the damping constaptresults from the Landau damping mechanism. Its
validity is confirmed experimentally for MnSi (Ishikawa a/ 1985) and NGAI (Bernhoeft

et al 1983, 1986). On the basis of our previous studies, we represent the above spectrum in a
parametrized form by introducing the energy scdlgand7, defined by

To=Toq}/2r  Ta=Nog}/2x@x (45 =6x>N/V)

wheregp is the zone-boundary wave vector for the crystal witimagnetic atoms within the
volume V. These parameters give measures of the spectral widths in the energy and wave-
vector spaces, respectively, which correspond to the exchange coupling constant in the case
of Heisenberg magnets. They are directly estimated from neutron scattering experiments
(Ishikawaer al 1985, Bernhoefter al 1983, 1986) or from analyses of the temperature
dependence of NMR relaxation time measurements (Hioki and Masuda 1977, Kontani 1977,
Yasuokeer al 1978, Umemura and Masuda 1983, Yoshimuied 1987, 1988). The imaginary

part, Imy (¢, w), the damping constarit,, andy (¢) are then given in the reduced form by

Mx(@.o)/No= =2 (y+aDt
2T T £2 + y2
Ly =27 Tox(y +x2) (2.5)
No 1
x(@) = mm

whereé = w/2nT,t = T/To, x = q/qg, andy = «?/q5. The change in spectral form of
the fluctuations is therefore taken into account through the parameleithis sense plays

a significant role in our following discussions. It has the meaning of the reciprocal of the
dimensionless magnetic susceptibility.

2.2. Thermal and quantum spin fluctuation amplitudes

With the use of the parametrized form of the spectrum, we can now explicitly evaluate the
thermal and the quantum spin fluctuation amplitudes as functionsaoid y. After w-
integration, the thermal amplitude can be represented in the following form as a wave-vector
integral:

) 2 * dw _ 9T
(s7) 0.0 = = ;/0 S @) Im (g, 0) = 22 A0 (2.6)
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where

1
AGy. 1) = fo dr 3N — 120 —y@] (= a/qs)

wherey (1) is the digamma function defined by

Inu— 1/2 P
u—1/2u —y(u) = A te27”—1t2+u2'
Because of the presence of the Bose factor in its definition, the amplitude has dependence on
both the temperatuneand the reciprocal susceptibility The critical thermal amplitude for

y = 0s, in the small limit, given by

1
A0, 1) = / de x3[INue — 1/2ue — ¥ (ue)] (ue = x3/1)
0

1/t
= %;4/3 /O ds s¥3[Ins — 1/25 — ¥ (s)] =~ %c4/3z4/3 (2.7)
where
s s s — 1725 — )] = EOT@
Cy _/0 ds s [Ins — 1/25 — ¥ (s)] = (@)% Sinra/2)
= 1.006089 - - (for o = 4/3).

On the other hand, itg-dependence around the origin is estimated as follows. Note that only
the narrow region around the origin of the integrand of (2.7) is affected wharanges its
magnitude fory <« 1. Since [lnu — 1/2u — ¥ (u)] is approximated by 22u for u « 1 there,

the amplitude is dominated by the following singuldp-dependence:

1
A(y,t)—A(O,t):/ dxx3<1 ! >
0

u 2u,
1 2
=£/ dx( * —1>=—ﬂtan‘1<i
2 Jo y+x2 2 JY
Tt
~ _Zﬁ (for y >~ 0). (2.8)

The critical dependence df(y, t) ony andr is therefore summarized by

1 wt
Ay, 1) ~ 504/314/3 -V (forz, y < 1). (2.9)

The quantum amplitude, on the other hand, has no explicit temperature dependence,
though it still has an impliciy-linear dependence given by

9Ty

(s7), 00 =(s?), 0~ Foecr. (2.10)

The aboveg-linear coefficient can be estimated as follows. Since taking a Lorentzian shape for
the spectrum is only justified in the low-frequency region, we have in general to introduce the
w-dependence of the damping consta@g, ») in the higher-frequency region. The first-order
y-derivative of the quantum amplitude is then represented by

o 3 X dw [ 0 w
5(5 Yz(y) = N_giq:/o — {5[X(Q)F(q,w)]m

20T (q, w) BF(q,a))}
[02+T2%(q, w)]? 3y

—[x(@)T(g, w)]
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_3 &/md_wi
NSXq:X(CI) dy Jo 7 [a)2+r‘5]2

Zng

12

3 ary,
= N Xq:x (@) R

We first note that the-dependence mainly arises from the low-frequency region in the in-
tegrand wherd (g, w) is very small. The first term is then neglected since the product
[x(g)T' (g, )] is almosty-independent there, as we see by recalling the expressiopggor
andrl’, in (2.5). They-linear coefficient mainly comes from the second term, shown as the sec-
ond line. Since its spectral intensity is now confined to within the low-frequency regian; the
dependence df (¢, w) of this term is well approximated dy, = I'(¢, 0). After w-integration
it is given as an average @fi¢)dI'; /dy over the whole Brillouin zone. From the expressions
forT'y andy (¢) in (2.5), we can see that it has a magnitude of the ord&g6f 4. If we simply
extrapolate the expressions of (2.5) throughout the whole Brillouin zone, we ebtaii/2.
Depending on the behaviourspfg) andI', as functions of over a wide area in wave-vector
space, the value @f will show some slight variation, but its magnitude is of the order of unity.
In this way, y-dependence of the quantum amplitude is present and is caused by the change
of the spin fluctuation spectrum. The effect is in general not so small and is not neglected.
With the use of the above expressions for both of the spin fluctuation amplitudes, we
obtain the following relation between them at the critical temperatue, = T,/ Top:

y=0

<S?> = <S?>Z O+ <S,»2>T ©,10) = <Si2>z 0 + gT—ZOA(o, fe).

tot

Weak itinerant-electron ferromagnets are characterized by their gsvraltios. From the
expression for (0, 7) in (2.7), the thermal amplitude for these magnets remains always very
small because, of the same order of,, is very small, whereas the quantum component
(Sl-2>z(y) has a large amplitude, of the same magnitude as the total spin fluctuation amplitude.
In contrast, their size difference is reversed for Heisenberg magnets because of the localization
of the spectral weight within the low-energy region. To show the clear distinction between
these types of magnet, the magnitudes of the critical amplitudes for the two components are
compared in table 1. It is important to realize from the table that weak itinerant-electron
magnets are characterized by the presence of quantum spin fluctuations with large amplitude
throughout the wide temperature range of interest. For this reason, the quantum amplitude has
key significance in our understanding of the properties of these magnets.

Table 1. Comparison of the magnitudes of the thermal and the quantum amplitudes.

Compound  Heisenberg system Itinerant weak ferromagnets
Thermal  ($2)7(0.7) ~O(1)  ($?)7(0, 1) < 1
Quantum  ($?)7(0) < 1 (82)2(0) ~ O(1)

Our basic idea for deriving the magnetic equation of state is based on the following
observations on the behaviour of the spin fluctuations in the presence of a static uniform
moment:

e The magnitude of the local squared spin opersfdnas an almost conserved expectation
value. This assertion seems to be well justified for Heisenberg magnets. What we assume
is that it is also applicable to the itinerant-electron magnets.
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When a spontaneous moment appears at low temperature Bglomin the presence
of an external magnetic field, the expectation has to be given by the sum of the squared
static momeni(S;)|? and the squared fluctuation amplitu@éf} 6S; = S; —(S;)).

e The anisotropy of the spin fluctuation amplitude has to be taken into account.

This effect arises from the anisotropy of the reciprocals of the magnetic susceptibilities.
Depending on the direction of the external field applied to the system relative to
the static moment, the magnitudes of the perpendicular and the longitudinal magnetic
susceptibilities become different. They are, respectively, giveH by anddH /oM, or
in dimensionless units by andy, defined below:

1 h
T
AO
(2.11)
_ 2z = 2o
Ve =Kl = e TV T %%

The effect is included by assuming anisotropic inverse squared correlation leRgthg
KZ2 in evaluating spin fluctuation amplitudes.

e The effect of the presence of spin-wave mode also has to be taken into account for
evaluating the transverse amplitude.

Because of the appearance of the spin-wave mode around the origin of the wave-vector
space, the transverse component of the dynamical susceptibility is affected there. The
effect has often been neglected in previous studies. Later we will discuss the importance
of this effect in more detail.

If we take into account the first two of these effects, the sum rule condition in the
paramagnetic state, for instance, is expressed by

3To o2

—[2A(y, ) + A(y.. 1) — cz(2y + y )]+ —

Ta 4

The magnetic equation of state is now derived as follows. According to Takahashi (1986),
equation (2.12) can be regarded as a first-order ordinary differential equationdsra
function of o if we substitutey, in (2.11) into (2.12). By solving fog, in terms ofy and

o, we can determine the first derivative /do as a function ofy ando. What we need to

do is therefore to deal with a single first-order differential equation rather than two coupled
integro-differential equations as in the case of the SCR theory. The rotational invariance
requirement is automatically satisfied.

Ty
= 2040, 1). (2.12)
Ta

3. Equation of state in the ground state

As a simple illustration, let us first reproduce our previous results (Takahashi 1986) on the
magnetic isotherm in the ground state. Because of the absence of the thermal spin fluctuation
amplitude, equation (2.12) reduces to the following simplified form of a linear first-order
differential equation fow:

0%  3c.To 0% 3c.To ay 9T4
— — 2y +ty,) = — — 3y+to— | = ——A(@,1). 3.1
2 TA(y ) = T <y aaa> T ©,7). (3.1
We can easily find its solution by assuming that
Y = yoo+ y100°. (3.2)
On substituting (3.2) into (3.1), the coefficienty andy;o are determined. They are given by
A0, 0) Ta |2 Ty
- _ - _ KY 0,1t = . 3.3
Y00 - ST < ’>T (O, 1) 0= 50T (3.3)
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The saturation momen; is obtained from the condition = 0 (i.e.,h = 0):

1 607
02=-20 - = A1) = —LA(0. 1)
Y10 Czy10 Ta
20T,
= T—0C4/3l‘;1/3 (fort. <« 1) (3.4)
A

where the-dependence of the thermal amplitude of (2.7) is used in the last line. In terms of
af, the solutions foy andy, are also expressed as follows:

2
_ 2(@
Y = y100; (p—1>

N

5 (3.5)

o
Yo =y +2y1002 = y1007 <3; - 1) = 2y1002 + 3y.
N
The o2-linear dependence of in (3.5) is equivalent to the free-energy expansion in
powers ofM up to the fourth-order term. Let us take the expansion and the magnetic equation
of states in terms of the original thermodynamic varialflend H as follows:

F(M):F(O)+72M + — F1oM
2(giB)“ X0 4 (3 6)
H— oF (M) _ 1 )

= M + FioM?3,
oM (gus)%x0 10

Then in reduced units the second line of (3.6) is also represented by

2 — 212

- %a + %’03 F10= (2up)*N3Fio= 15CZATO. (3.7)
The above result is interesting because the fourth-order coeffiEignts unrelated to the
form of the single-particle density-of-states cupue) around the Fermi levelr, in contrast
with the situation in Stoner—Wohlfarth theory and that in SCR theory. According to (3.7), it
is related instead to the collective magnetic excitation spectrum, i.e. the spectral #jdths
andT, of spin fluctuations. The reason for this can be given as follows. Even in the ground
state with no thermal fluctuation amplitude, the response of the system is still governed by the
reaction of low-lying magnetic excitations to the external perturbation of the magnetic field. In
this case, the quantum amplitude is suppressed and its reduced amplitude is transformed into
a uniform magnetization since the total amplitude remains unchanged. The field dependence
of the magnetization is therefore determined by the property of magnetic fluctuation. On the
other hand, excitations associated with the redistribution of single-particle occupation numbers
are higher in energy. _

We can check the validity of (3.7) experimentally. The valu& ¢f is estimated from the
magnetization measurements. If we plot the observed squared magnetietiagainst
the ratioH/M, i.e. in the form of an Arrott plot (Arrott 1957) 10 can be obtained from
the slope of the curve. We show in the second column of table 2 valuégdhus obtained
experimentally for several compounds at low temperature. These values compare well with
the values of Ij/lSTo in the third column calculated by using the paramef&rand T4
obtained from other independent measurements. The valusanfd 74 shown in the table
are those estimated directly from neutron scattering experiments for MnSi (Ishétawa
1985) and N4AI (Bernhoefter al 1983, 1986). The values d@p can also be evaluated from
the analysis of the temperature dependence of the NMR relaxation time; those listed in the
table are estimated from the measurements by Yaserakia(1978), Umemura and Masuda
(1983), Hioki and Masuda (1977), Kontani (1977), and Yoshinural (1987) for MnSi,

2h
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Ni74.7Al25 3 Saln, ZrZny, and Y(Cq _ ,Al,),, respectively. The values @f; in the table are
then determined from thegg and the observed valuesa@f and7, by using (3.4). Itis quite
difficult to envisage a close correlation between the obseRsgdand the values obtained
from (3.7) if the fourth expansion coefficielfyg was determined by the density-of-states
curve around the Fermi energy; i.e.

Fio=1[p'(er)/p(er)]® — p"(eF)/3p(eF).

Table 2. Comparison of the results from (3.7) with the observed coefficiéiig given by (a)
Blocher al (1975) (at 4.2 K), (b) Sasakueaal (1984), (c) Takeuchi and Masuda (1979), (d) Ogawa
(1976), and (e) Yoshimurer al (1987). The values ofy and T, marked with the superscripts
were obtained from neutron scattering experiments.

Compound F10(K) 4T2/15To (K)  To (K)  Ta (K)
MnSi® 971x10° 50x 103 2317 2.08x 103
6.9 x 10° 171 211x 103
Ni3Al 0.71 x 10° 3590  3.09 x 10
Niz47Al 55 3® 1.03x 10° 153 x 10° 2860  405x 10%
SgIn(© 2.00x 10°  0.66 x 10° 565  118x 10
ZrZny@ 1.05x 10* 6.5 x 104 321 883x 10°
Y(Copg7Alg13)2® 21x10*  157x10* 2290 116 x 10
Y(Cog.gsAl0.15)2 10x10*  051x10% 2119  634x 103

Y (Cogg3Alg17)2 16x10*  063x10% 2093 703 x 103

With the use of (3.7) we can also derive useful relations that enable us to estimate the
microscopic spin fluctuation paramet@gsand7,4. By eliminating eitheiTs or Tp from both
of (3.4) and (3.7), we can represent the raflgsT, and74/ T, in terms ofT,, o5, andF 1,
guantities readily available from macroscopic magnetic measurements:

(E)S/G _ /30c;0? <F_10>1/2
To 40C4/3 T.

<T0>5/3_ o2 < 5 >1/3< T, >1/3
Ta ~ 20C4/3 \ 15¢; F1o '

We show in table 3 the values @ and T, estimated from (3.8) for the compounds listed
in table 2 by using observed values®f o, andF1. The table also includes results of the
analysis for (ZrTi)Zn, (ZrHf)Zn, (Ogawa 1968), FeCo;—, Si (Shimizuer al 1990), Y2oNi,
(Nakabayasher al 1992), Y2Niis, Y2Nii7, YNi3z (Gignouxer al 1980a, b), and Rt Ni,
(Beille er al 1974, Beille 1975).

The values offy andTy4 in the last two columns (denoted H}} ande) are reproduced

from table 2 for comparison. The values Bj for Fe,Co;_,Si are determined from the
slope of theH /M versusM* plot at the critical temperature (Shimizual 1990) as will be
explained in a later section.

(3.8)

4. Magnetic equation of state in the paramagnetic phase

In the paramagnetic state, the magnetic equation of state is obtained by solving the following
equation fory as a function ob:

37T o2 9T
T—°[2A<y, 0+ A t) = @y + o)+ o = 2940, 1,). (4.2)
A Ta



Quantum SF theory of the magnetic EOS of weak itinerant-electron FM 6333

Table 3. Values ofTy, T4 estimated experimentally from the obseni&doy, andF 1 by (a) Bloch

et al (1975), (b) de Boeer al (1969), (c) Umemura and Masuda (1983) (powder), (d) Sasakura
et al (1984), (e) Hioki and Masuda (1977) (powder), (f) Takeuchi and Masuda (1979), (g) Ogawa
1976, and (h) Knappr al (1971).

Compound T.(K) oy (up) F1(K) To (K) Ty (K) 73 (<) T} (K)
MnSi(@ 30 04 971x 103 155 218x 103 231 208 x 103
NigAl®) 415 0.075 BOx 10° 2760 367 x 10 3590 309 x 10*
NizAl © 40  0.0692  168x 10° 2703 413 x 10*

Ni7a.7Al 25 49 23.2  0.047 103 x 10° 3840 385 x 10%

SqIn® 6  0.081 472x 10° 479 921x 10° 565 118 x 10
Sm.7579n0.2428) 5.5  0.045 M0x 10° 286 146 x 104

ZrZn9) 213 0.12 105 x 104 1390 740 103 321 883 x 103
Zrzng oM 26  0.16 821x 103 1110 585 x 10°

Zrg.92Tio.08ZN2 40  0.233 149x 10* 628 592 x 103

Zrp gTig2Zny 49.4 0.278 B8x 10* 536 581 x 103

Zrg.gHf g 12N, 10.2  0.078 20x 10* 1110 707 x 103

Y(Cop_yAlx)2

x=0.13 7 0.042 20x 104 1.92x 103 1.23x 10* 2.290x 103 1.16x 10*
x=014 15  0.094 1.10 1.44 0.772

x =015 26 0.138 1.00 1.41 0.726 2.119 0.634
x =016 22 0.130 0.95 1.28 0.676

x =017 16 0.095 1.56 1.27 0.846 2.093 0.703
x =018 9  0.063 2.77 0.984 1.01

x =019 7  0.040 411 1.28 1.40

Fe,Coi_, Si

x =0.36 23 0.11 59x 104 069x 103 1.2 x 104 0.727 x 103
x =048 48  0.19 3.16 0.87 1.0 0.727

x =067 55  0.22 3.82 0.68 0.99 0.725

x =077 40 0.8 9.76 0.38 1.2 0.824

x =088 28 0.13 18.03 0.32 15 0.917

x =091 14 0.07 57.60 0.23 2.2 1.268

Y oNiy

x=70 52 0.033 2Z7x10° 5172x 103 21x 10%

x=6.9 52 0.047 9.45 3.799 11.6

x=6.8 60  0.064 7.28 2.580 8.39

x=6.7 58  0.078 6.03 1.723 6.24

x =15 119  0.15 B7x 10 3.33 3.51

x =17 140  0.27 6.79 1.54 1.98

YNiz g 32 0.047 78 x 10° 1.706 7.91

YNi3 30 0.04 10.4 2.18 9.23

Pty Nix

x = 0.429 23.0 0.051 B4x 104 437x 103  3.07x 104

x = 0.452 54.2 0.104 4.45 3.67 2.46

x = 0.476 74 0.143 3.74 3.12 2.08

x = 0502 100  0.179 3.90 2.87 2.04

In this casey always becomes finite even in the absence of an external magnetic field. We
can determine its initial condition, the value ot yg (=y;) for o = 0 (h = 0), by solving



6334 Y Takahashi

Starting fromy = yg ato = 0, the magnetic isotherm is obtained by numerically integrating
(4.1) at any given temperature.

The temperature dependence of the reciprocal magnetic susceptibility is determined as
the solution of (4.2). For instance arounek ¢, with the use of the critical dependenceyn
andr, equation (2.9), of the thermal amplitude, equation (4.2) is approximated by

1 Tt
SCaa (190 =1¥%) - - ym=o. (4.3)

The yp-linear term due to the quantum amplitude can be neglected here compared with the
square-root term because is very small. The critical temperature dependencemfs
therefore given by

4 NE
=|—c <t4/ S ) . 4.4
Y0 [?ﬂ - Cays c (4.4)
At general temperature we need to solve (4.2) numerically. It is already known that a Curie—

Weiss-like temperature dependence is derived over a wide temperature range from the equation.

4.1. Universal relation for the magnetic susceptibility

Equation (4.2) has an interesting property as will be explained below. We have already argued
that the coefficient, will have a magnitude of order unity. If the temperature dependence
of the reciprocal magnetic susceptibility is represented in the form of-thependence of
y, equations for various compounds look the same independently of the material parameters
specific to them. From this scaling property we can derive the relation between the. yatio
and the critical temperatuf®.

In our present units, the Curie—Weiss law for the magnetic susceptibility is given by

No,u%aez

2, _
GHB)X =37 15 (4.5)

In reduced units, it is also represented by

1 2
X _ % (4.6)
No 2Ty 12T6(t — t.)
We can now associate the effective momenivith the slope of the-dependence of as
follows:

02 6To(t — 1) _ 6 o2 t—1 N 302 1 @7
¢ Tpy 20C4/3t;1/3 y 10C4/3t;1/3 dy/dt

where from (3.4) we used the relation

To o S2

Ty - 20C4/3l‘?/3 .

On the other hand, the slope of the curgyg'dr is a universal constant determined by solving
(4.2). From these results, it follows that the ratig/o, is determined as a function of the
single parametet = T,/ Ty, i.e.,

o? 3 1

e

- =— 53— 4.8
O-s2 10C4/3t:}/3 dy/dt (4.8)
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Figure 2. Numerical results for the temperature dependenceygtidfor 7. = 0.01 (solid line),
0.05 (dashed line), and 0.1 (dot—dashed line).

We show in figure 2 the numerically calculatedependence of the slope (4 for several
values oft.. If we employ the numerical estimate of (r ~ 0.17, the following relation is

derived:

N

Ze ~ 1751743, (4.9)

Q

N
To test the above.-dependence, we plotted in figure 3 the obsermvgld, as a function of
t. = T,/ To for various compounds listed in table 4. The solid curve in the figure stands for the

above theoretical result (4.9). In order to show the validity of the expﬂé’ﬁs—dependence,

values of(o, /o,)? are also plotted againtgf“/?’ in figure 4 for Y(Cq _ ,Al,)2. On the other

hand, in the Rhodes—Wohlfarth plot (Rhodes and Wohlfarth 1963 is plotted against,

(oc is defined by (o¢ +2) = oez). We reproduce in figure 5 the comparison between these
two types of plot (Nakabayashi a/ 1992) for the same compounds as are listed in table 4.
From the figure we can clearly see the regularity when results are plotted according to our
proposal for most of the itinerant weak ferromagnets. Heisenberg magnets fall on the straight
line with the constant ratiec /o, = 1 in the Rhodes—Wohlfarth plot, whereas in our plot they
are all located around the narrow region in the limit of our theoretical curveayjtty, ~ 1

and7,./Tp >~ 1.

4.2. Equation of state in the paramagnetic phase
In the presence of a magnetic field, we can solve the equation by assuming the following field
dependence of andy. for smallo2-values:
2
y=yo+yo©+--
(4.10)

dy
V:=y+oo— =yo+ 3ol
do
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Figure 3. The universal relation between the ratig/oy andz. (=7, /Tp)-

The solution has the same expansion form as the ground-state one. It is equivalent to the
free-energy expansion in powers@P. In the same way as for (3.7) in the ground state, let
us assume that the-dependence of is given as follows:

1h N F;

y=—— = LA

Tao  2x(T)Ta 8T
From comparison with (4.10), the relatién = 8T 4 y1 is then obtained. After substitution of
(4.10), equation (4.1) can be expanded up tasthdinear term as follows:

T 13400.0 540, 010° ez (30 + By10?) | + 7 = A0 10

whereA’(y, t) is the partialy-derivative of the amplitudd (y, r) given by
1 1
Ay, 1) = - / e x¥1/u + 1/2u% — ' ). (4.11)
0
Comparing ther2-linear coefficientsy; and therefore™; are given as follows:
= Ta _ Y10
60To[c; — A'(yo, 1)] 1—-A'(yo,t)/c;
212 F1(0)

F1(T) = 8Txy1 =

= F1(0) = Fyp).
15To[c. — A'(yo, ] 1— A'(yo, 1)/c: (F1(0) 10)
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Table 4. The observed moment ratig /oy and 7./ Tp. The values offy are estimated from the
slope of an Arrott plot according to (3.8). The effective moments for the first four compounds are
from (a) Yasuokeer al (1978), (b) de Boeer al (1969), (c) Hioki and Masuda (1977), and (d)
Kontaniet al (1975).

Compound os(up) oe (LB) Tc (K) To (K) Oe /05 Tc/To
MnSi 0.4 225@ 30 155 56  0.194
Ni3Al 0.077 130 415 2760 169  0.015
Sain 0.045 1.39 55 479 289  0.0115
Zrzny 0.12 1.449 213 1390 120 0.015
ZrggoTigogZny  0.233 1.33 40.0 628 571 0.064
Zrg gTig2Zny 0.278  1.38 49.4 536 496 0.092
ZrggHfg1Zno,  0.078  1.27 10.2 1110 163  0.0092
Y(Co1_xAlx)2

x =013 0.042 250 7 1920 595  0.0036
x =014 0.094 224 15 1440 238  0.010
x =015 0.138 215 26 1410 156  0.018
x=0.16 0.130 214 22 1280 165  0.017
x =017 0.095 213 16 1270  22.4  0.013
x =018 0.063  2.08 9 984  33.0  0.0091
x =019 0.040 2.04 7 1280  51.0  0.0055
Fe,Coi_, Si

x=0.36 0.11 1.12 23 640 102  0.0359
x =048 0.19 1.32 48 841 6.9  0.0571
x = 0.67 0.22 1.39 55 680 6.3  0.0809
x =077 0.18 1.13 40 399 6.3  0.1002
x =083 0.13 0.94 28 340 7.2 0.0824
x =091 0.07 0.58 14 239 8.3  0.0586
Y oNiy

x=7 0.033  0.631 52 5172 19.1  0.0101
x =69 0.047  0.728 52 3799 155  0.0137
x=68 0.064  0.786 60 2580 123 0.0233
x=67 0.078  0.826 58 1723 106  0.0337
x =17 0.27 0.729 149 1544 5.22  0.0965
x=15 0.15 0.677 119 3329 8.97  0.0357
YNis g 0.047  0.693 32 1706 147  0.0188
YNi3 0.04 0.70 30 2178 175  0.0138
Pt;_, Niy

x = 0.429 0.051  1.59 23 4370  31.2  0.0053
x = 0.452 0.104 159 542 3670 153  0.0148
x = 0476 0.143 159 75 3120 11.1  0.0240
x = 0.502 0.179 159 100 2870 8.89  0.0348

Numerical results for the temperature dependencesanid y;/y10 are shown in figure 6.
Becaused’(yo, 1) is always positiveF1 is slightly smaller than the ground-state value by 20
to 30% in the paramagnetic state except around the critical point. It is important to realize
that the fourth expansion coefficief{ (T) is also dependent on the temperature and external
field, though its dependence is weak except arauad,.

As we approach the critical point, the derivati®§yo, r) shows the divergent behaviour

—71/8. /3 aroundyo = 0. From the(r%/3 — 1./%)2-dependence ofy around: = . in (4.4),
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Figure 4. The linear relation betweefw, /o )2 andtf/3 for Y(Cop_,Aly)2.
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Figure 5. Comparison between two types of plet; /o5 versusT, (the Rhodes—\Wohlfarth plot)
ando, /o5 versusl,/Tp.

the following critical temperature dependenceofs obtained:

8c:y10 8c;y104C4/3 ( 4/3 4/3) 32c;y10C4/3 ( 4/3 4/3)
1 T, Y= t. 3mt, ¢ 3212 ¢ ( )
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Figure 6. Ther-dependence of andy1/y1g in the paramagnetic state fr= 0.01 (solid line),
0.05 (dashed line), and 0.1 (dot—dashed line).

ThereforeF; shows the same temperature dependence as thaFpand decreases towards
the critical pointr = r. according to the following temperature dependence as shown

in figure 6:

Fo(T) _ y1 _ 32:Cay <1>4/3 _1). (4.13)
F1(0)  yio 37223 |\T.

When we compare the result with experiments, we must be aware that we are discussing the
inverse of thenitial slope of the Arrott plot 2 versusH /M plot) in the weak-field limit.

If we estimate the slope in the presence of the field, it is likely to be underestimated. With
increasing field strength, the slopedfdy of each magnetic isotherm decreases monotonically,

andy; approaches the valugo. Numerical results for the equation of state throughout the
wide temperature range will be given later after we have discussed the magnetic properties for

the ordered state beloy.

4.3. Critical magnetization process

At the critical temperature = #., both components andy, of the reciprocal susceptibility
are very small around = 0 because both of them just vanish éoe= 0. Each of the thermal

amplitudes is then dominated by the following square-root dependence:
Tt Tl
A(yvt{,’):A(Ov tC)_Tﬁ A(y27t{,’) :A(Ov tC)_ T\/ﬁ

Hence the sum rule condition (2.12) is approximated by

3n T,
2= T (23 +/32) + Oy, y2).

(4.14)

(e
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In the right-hand side, both the and they,-linear terms, coming from the implicit magnetic
field dependence of the quantum amplitude, are neglected compared with the first two square-
root terms. We can easily see that (4.14) has the following solution i the limit;

dy
y=yol y.=ytos==(1+pyo’. (4.15)

On substituting (4.15) into (4.14), the numerical constarind the exponenitare determined
as follows:

Ta 2 { 20c;y10 }
= AL _ ) eFdI0 = 4. 4.16
> { 37T, (2 ++/5) } (2 ++/5)1, p (4.16)

We are thus led to the critical magnetization process:

h 1 2ugH ( M )4

Tao — Ta M/(Nowp) ~° \ Noup
In a similar form to the Arrott plot, it is also represented as follows:

o\ 3 [re+vB]
<o_s) = Cuss 20 A1) (4.17)

In figure 7 numerical results from (4.1) at= ¢, are shown for several values f The
linear relation betwee(w /o,)* andy/A(0, t.) is evident from the figure. We can also see the
t.-dependence of the slope of the plots, i.e. the slopes become steeper for larger

0.02

0.015

0.01

(o/o)*

0.005

0 M 1 M 1 M
0 0.02 0.04 0.06

y/AQO.L,)

Figure 7. The critical magnetization process figr= 0.05 (solid line), 0.1 (dashed line), and 0.2
(dot—-dashed line).

In terms of the original variabled andM, it is expressed by

4 2va 6 T2 H
M* = 2[3r (2 +V5)]*Ngn§ =5 —
TS M
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or, in a more convenient form for experimental analyses,

MA\* T2 H
<—> =120x 10°0—— — (4.18)
Ms TAO';"M

if H andM are measured in units of kOe and emu Molrespectively. The above relation

is useful in estimating the value @fs. If the slope is determined experimentally from the
M*-H /M plotatT = T,, T4 is evaluated from the observed valuesrpaind7,. In the case

of MnSi the Arrott plot of the observed—H curve (Blocher al 1975) shows a good linearity
betweenM? and H/M at low temperature. At the critical temperature, on the other hand, it
is rather well fitted with the relationV / M;)* = 0.234H/M (kOe g ema?). With the use

of T, = 30 K ando, = 0.4 from table 3, we obtaifly = 1.29 x 10° K which compares
well with T, = 2.08 x 10° K obtained from the neutron scattering experiments (Ishikawa
et al 1985). Such an analysis was also performed fquGeg_, Si by Shimizuer al (1990).

The values off’4 estimated in this way are shown in the last column of table 3. They also
agree well with those estimated by using (3.8) within a factor of 2.

5. Magnetic equation of state in the ordered state

According to the Stoner—Wohlfarth theory (Stoner 1936, Wohlfarth 1968, Edwards and
Wohlfarth 1968), the temperature and field dependence of the magnetizatign7) obeys
the following equation:

2x.0H

MH.T) (5.1)

M%(H,T) = M?(0,0) [1 —(1/ TL.)Z] +

wherey.o is the longitudinal (differential) magnetic susceptibility. The saffedependence
of M2(0, T) has been predicted by the SCR theory at low temperature, based on the spin
fluctuation mechanism. Inthe latter, howeve2(0, T') follows a(7.”*— T4/3)-dependence at
highertemperature arourigl Although there have been lots of experiments on the temperature
and field dependence of the magnetization in the ordered state, neither comprehensive nor
guantitative analyses of them have yet been performed from the latter point of view. This is
the purpose of this section.

According to our view, the magnetic properties of the system in its ordered state are
treated on the basis of the following sum rule:

o2

4
whereA;(y, r) is the transverse thermal amplitude in the presence of the spontaneous magnetic
moment. With the use of the parametgg defined by (3.3), it is also given by

3To 970
T—[2At(y, 1+ A, 1) — 2y +y)]+ — = —A(0, 1) (5.2)
A Ta

2A,(y, 1) + A(y, 1) — ¢2(2y +y;) + B¢, y100% = 3¢, y1007 (5.3)
where
dy
=y+o—.
Yz y 680

To solve the above differential equation, we need an initial condition, the valuab$ome

startingo-value. In the case of the paramagnetic state, we can determine the condition with
the use of the same differential equation. In contrast, it is not so easy to find it from (5.3) in
the ordered state for the following reason. From the continuity of solutions, it is reasonable to
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assume that the solutionof (5.3) should have the samé-dependence as that of the ground
state:

y:yl[oz_gg]J,... .

yz=y1[30,2_0.g:|+...:3y1|:02—ag]+2y105+--~=3y+yZ0+"'

wherey,q is the reduced longitudinal reciprocal susceptibility in the absence of the external

field. The above form of the solutionis equivalent to the free-energy expansion in powers

of M?. Itincludes two independent parametexsandy;. The parameterg has the meaning

of the spontaneous moment per magnetic atom at general temperature bhelowthe other

hand,y; is proportional to the fourth-order expansion coefficienof the free energy. Even if

we puty = 0in (5.3), forinstance, we are left with only a single condition for two independent

parametersg andy;. It seems that we require another condition to determine them. The key

to resolving this difficulty is to realize that the solution (5.4) imposes a strict restriction on the

form of the differential equation. Equation (5.3) has to be compatible with the above solution.
For the longitudinal amplitude, there is no difficulty becaysés always finite below.,.

It is a well-behaved function of,. The transverse mode is, on the other hand, influenced by

the appearance of the spin-wave mode. At the outset, it is therefore necessary to examine its

effect on the dependence orandr of the amplitudeA, (y, 7).

5.1. The effect of the presence of the spin wave

Due to the presence of the spin-wave mode, the transverse thermal amplitude consists of a
sum of contributions:

Ar(y, 1) = Ag(t) + Ac(y, 1).

The spin-wave contribution, denoted By, (1), comes from the spin-wave modes arising
from the well-defined spin-wave pole, of the transverse dynamical susceptibility at low
temperature around the origin of the wave-vector space:

Im x(q, w) xod(w — wy).

The other one is given by the wave-vector integral over spin fluctuation modes with the finite
dampingrl’, outside the spin-wave region, like the expressidn, ¢) in (2.7). Itis explicitly
given by

1
Ac(y,t) = / de x3[Inu — 1/2u — Y ()] u=x(y+xd)/t (5.5)

where the reduced cut-off wave vectQrrepresents the boundary of the spin-wave region.

Although the spin-wave modes are confined within a restricted region around the origin of
the wave-vector space, they have a significant effect on the analytic property of the transverse
thermal amplitude, as will be shown below. If we do not take the effect into account,
for instance, the/y-dependence of (2.8) becomes dominant aroung 0, and (5.3) is
approximated by

- Ty i) + Seanor? = Seonos() (5.6)
where
s2(t) = 8 [A(0, ) — A(O, )].

5c;y10
According to the same argument as before, it is easy to see that (5.6) has a solution
y o« [02 — 52(1)]°. Bothy andy, then vanish foi: = 0 and the spontaneous momeptis
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simply given bys(t), in disagreement with the valug in ther = 0 limit (62 = 552(0)/3).
The magnetization process in the weak-field limit also shows the following spurious behaviour:

o2 — s%(t) « (h)o)*/3

which reflects the singular non-analytjéy-dependence of the thermal amplitude. From this
example, it is clear that the naive replacemendgfy, 1) with the paramagnetic form(y, 1)

is not compatible with the solution (5.4). This strongly suggests the necessity of examining
the effect of the spin-wave mode on the analytic behaviour of the transverse amplitude as a
function of y.

5.1.1. The y-dependence of the transverse thermal amplitude. In the present treatment we
assume that the explicitdependence of the thermal amplitude comes from that 67, 7).

Its y-dependence around= 0 is evaluated as follows. It mainly originates from the integral
around the origin, where the integrand is well approximated®u. It is therefore given as
follows:

1 1 1 r (1 x2
Ac(y, 1) — Ac(0, 1) =~ | dx x3( = — =—/ d -1
(v, 1) ©0,1) /xf x x <2u 2uc> Z/xf x<y+x2 )
t
= Ty <tan‘1ﬁ —tan! ﬂ)
Xe

oy (VYA =x)\ [—ty/(2x) fory < x.
__Ttan < v+ xe )_{—ntﬁ/4 forx. <y (5.7)

whereu. = x3/t. If we assume, = 0 fromthe beginning, thg/y-behaviour recovers around

y = 0. For finitex,, it becomes proportional to and is expanded in powers pfaround the

origin. By expanding the amplitude yaround the origiry = 0, we obtain the same form of

equation as that for the ground state. We can therefore find its solution by assuming (5.4). In

view of this meaning, the introduction of the lower bound of the integral is quite important.
Phenomenologically, let us introduce the following form of the cut-off wave vegtor

4 4
Xe = E\/ﬁ = E,/Zylag. (5.8)

It is linearly proportional tarp at low temperature, while it decreases in proportionaigo
around the critical point as will be clarified below. This is equivalent to an assumption that
the transverse thermal amplitude is suppressed almost as much as the longitudinal one by
the appearance of the static uniform moment. Thand y,-derivatives ofAA.(y, ) and

AA(y,, t) are then given by

0AA (y,1) Tt 0AA(y,, 1) wt
Y ~ § Yz ~ — (fory, y, >~ 0).

dy 8o dyz 8/¥z
At present, we simply assume that the numerical fagtr slightly larger than 1, since the
transverse amplitude is more susceptible to the external field than the longitudinal one.

5.1.2. The temperature dependence of the thermal amplitude. Let us next examine the
temperature dependence of the transverse thermal ampHliuater). At low temperature,
because of the presence of the finite lower boupdA.(y, ) shows the followings?-
dependence:

1? 1?

1 1 3 1
= 3 — — ~ x— = _—
Ac(0,1) = /x(: dx x°[Inu — 1/2u — ¥ (u)] /Xc dx 1252 /Xc dx 1203~ 242 (5.9)
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on using the asymptotic expansion of the digamma funatiar):

Inu—1/2u — (u) ~ (u>1). (5.10)

_ ...
1242

If we let x. = 0, the critical*/3-dependence of (2.7) is recovered foe= 0. The presence

of the lower bound is therefore important in deriving tedependence of various magnetic
properties at low temperature.

To evaluate the spin-wave amplitudg,, (), we simply assume that its spectrum is always
approximated by the delta functiers (w — w,). What we need is the frequency-integrated
value. In our present treatment, the effect of the lifetime broadening at finite temperature on
the integrated intensity is assumed to be small. Its temperature dependence is then given by
the following form of the wave-vector integral:

A _ oTs [* x2 d
swlf) = 270 Jo eh*Taoxd/T _1

hw, = h + Dg%x% = h + Tyox? (Dq% = TAO'>

whereD represents the spin-wave stiffness constant. We determined the cabstadtthe
pre-factorT 4o /2Ty before the integral, so the integrand coincides with the long-wavelength
limit of the integrands ofA.(y, t) and A, (0, t). At low temperature it shows the well-known
T3/2-dependence:

Aoty ~ T2 (L 3/2/00 g VEEGR 0Ty (T (5.11)
" o -1 8 To \oTs '
whenaTAxf./T > 1 is satisfied. If we assume that~ ./y.0 ando ~ oy, which is justified
at low temperature, the condition can be expressed as
20sTa  2Ca;3Ta 173
B = ———0l,
T. 3c; To

e . ¢

where we have replacedgo? with [C4/3tf/3]/3cZ by using (3.3) and (3.4). For most weak
itinerant ferromagnets the ratify / Tp has a magnitude of about 10 (see tables 2 and 3, for
instance). The above inequality is therefore equivalent to < 1Oostcl/3. The spin-wave
T3/2-dependence is therefore observed at low temperature for those magnets with,small

andt.-values.

5.1.3. Initial conditions of the equation. On the basis of the foregoing discussions on the
transverse thermal amplitude, let us rewrite the condition (5.2) in the form

2
[2AAc(y, 1) + AA(y-. 1) — c:(2y + y2)] —

s2(t) —o%+
C; 10 5¢;y10

[A0,1) — A:(0,1)]

(5.12)
where
AA(y, 1) = Ac(y, 1) — Ac(0, 1) AA(y, 1) = A(y,t) — A(O, 7).

By expanding (5.12) iry and equating each of its zeroth- and first-order coefficients, the
following coupled simultaneous equations for parameférandyl are obtained:

2 1
(1 — _£> 0'02 + {AA(y;0,1) — 2[A(0, 1) — A,(0, )]} = s2(1)
5vy10 5¢zy10
. , (5.13)
yi|1— —AALO,1) — —AA (y:0,1) | = y10
B¢, 5¢c,
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whereA’(y, t) is the first derivative oA (y, 7) defined by (4.11) and’.(y, ) is given by

1
ALy, 1) = ?1/ dr x[1/u +1/2u? — ¥’ (u)].

The initial condition of (5.2) can be uniquely determined by solving (5.13) for two independent
parametersg andy;. Itfollows that the value of; also shows some temperature dependence.

The temperature dependences of both of these parameters are closely related to each other.
We show in figure 8 a typical temperature dependencefgs2 andy1/y1o for t. = 0.05.

Before we show numerical results for the magnetic equation of state at general temperature
belowz., let us next examine limiting behaviours of solutions, i.e. those around the critical
region and in the low-temperature region.

T =0.05, 6 =0.1

1.0 == T T
= \\\\ -

N

\
N
\
\
\\
05 F \ 4
\
\
\
\\

- olc’ \ 1
s \
I /ylo ‘\
|

0.0 L 1 L

0.0 0.5 1.0
TIT,

Figure 8. The temperature dependenceoéf/a“.2 (solid line) andyq/y10 (dashed line) belov.
for 7. = 0.05 ando; = 0.1.

5.2. Around the critical temperature

Because of our definition of the spin-wave amplitude, thdependence of the transverse
thermal amplitude has the following property of continuity as we approach the critical
temperature:

A (0,1) = Agw(t) + A0, 1) — A0, z.) (fort — 1.).

For small values o§ andy;,, the thermal amplitudes and their derivatives are approximated
as follows:

T Tt
AA(y;, 1) ~ _Z“/yz AA/(yZ, t) ~ —gﬁ
Z

AALO, 1) ~ —

é_nt
8@'
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By substituting these results into (5.13), we obtain the following simultaneous equations:

2 Y1> 2 wt 2
l1--——)of— ——/y.0=5°(t
( 5y10) °  20c;y10 Y20 ®

<1 . Emt N 3nr 1 >
1 = V10
Y ZOCZ\/ v:0 40c; v/ Yz0 Y

If we recall the definitiony,q = 2y1(702, we can easily find a solution for; of the form
y1= yéog from the second line. The coefficientis determined by

,_[40\/§czy10}2=[ 22T, T

(5.14)

Ye = | Zi.26 +3) 37T, (2 + 3) (5.15)

The same expression forg = 2y(f,05‘ is already obtained just at the critical point, i.e.

y. = 5y.0%in (4.15), ifog is taken as the field-induced momentlIn the critical limit, let us
assume that, should have the same dependence on the mosnierégspective of whether it is
induced by the external field or appears spontaneously. We can then determine the numerical
factor¢ of x. defined in (5.8). On equating. in (4.16) with 2/./5, & is determined by the
following condition:

20 \2 2 (40/2\°
<2+¢§> T 5\2+3

which leads tc. being given by

g 57 8V5
‘T 10

On substituting in the result, the first line of (5.14) is given by

2o(+ Tie\/2y.\ 5 B 4 2
o (1 ZOCzylo) = 0§ (1 +3) " s9(1). (5.16)

With the use of (2.7) for the critical thermal amplitude, the temperature dependestae)of
on the right-hand side is explicitly given by

=2288...

12Tp 43 3
204y = =29 /3 _ 43\ _° 2[4 _ 4/3
s2(1) = r Ca/3 (tc t )_ 20 [1 (T/Te) ] (5.17)

The temperature dependencey@fis therefore finally given by

2
(6(;?)) = :((225 i i)) [1 = (T/T)" 3] =ac [1 —(T/T)Y 3] (5.18)
where
3(2¢ +3)
“TB2 -1

The numerical factos, is given by 1.27 fo = &.. We show in table 5 the dependence of
a. on our various choices @f-value. The value ofi. is easily estimated experimentally as
the extrapolation of the observed linear relation betweggand 74/ to theT = 0 limit. The
values ofu, obtained in this way are slightly larger than 1 by 10 to 20% (Sasakuiial 984,
Shimizuetr al 1990), in agreement with our estimate foe &..
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Table 5. The dependence on the numerical fagtor

& ac ap ag ar
1.0 3 12 14.1 37.3
1.5 18 5 25.7 64.3

20 14 2.857 56.9 112
& 1.27 2.21 89.6 153
25 1.2 1.875 1227 191

According to the result given above, becomes proportional tfg aroundr = 7.. Hence
the fourth-order expansion coefficieff shows the same temperature dependeno§ asd
is given by

F 15¢, Ty 1 62 (o 2 640c,Cq/3
L gy 0 M e (90) 1 @yt
Fio 2T Y10 Y10 \Os (28 — 1)(2¢ + )7 2t:

B 32apc,Cay3 60

[1 1/ T,;)4/3] ar (5.19)

3n2??® 25 - +3)
The same temperature dependencé ofis now derived as in the paramagnetic solution,
i.e. (4.13), except for the numerical facior (ar = 1 for the paramagnetic case). These
results forag and F1 prove the validity of our treatment of the ordered state as well as
our expression for the cut-off vectar of (5.8). Ther-dependence af 1 is also consistent
with our critical solution, (4.18), i.e. the absencefof atr = .. In previous studies, the
temperature dependencefof has not been seen as important. It would be quite interesting
if the abover-dependence foF1 was confirmed experimentally. As an illustration, we
show in figure 9 numerical results for the temperature dependendes®f)? and y1/y10

15 . .
—— 1,=0.05
10 eee__ —— 1,=0.20
= T
= e
o) N
Lost N
N\
\
\
\
\
\
\
0.0 : ' :
0.0 0.5 1.0

4/3

(T/T.)

Figure 9. The :%/3-dependence of2 (thick and thin lines for. = 0.05 and 0.2) and+/y1g
(dashed line for, = 0.05).
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as functions of(r/7.)*3. We can see from the figure that the linearity of the curve looks
better for cases with smaller. The calculated qualitative tendency is in accordance with
the observed temperature dependence fgANiSasakura: al 1984) and (FeCo)Si (Shimizu

et al 1990). It also looks as if the calculated slope of the curve depends slightty. on
According to our result (5.18), however, the slapds a universal constant, independent of
te. This means that the real criticaf”/> — 74/3)-dependence af? is supported only in the
very narrow region aroung whenz, becomes smaller. The apparent overall good linearity
of such a plot for compounds with smallis therefore not the result of critical behaviour and
has a different cause.

5.3. Low-temperature behaviour

5.3.1. Temperature dependence of the spontaneous moment. At low temperature, from (5.9)
the transverse thermal amplitude and its derivative show the folloxfigpendence:

2

1
A = —_—
1(0,1) = Asn(t) + 24x2
5 (5.20)

2 4
t tc (mé 1
AALO 1) = -7 =—— | = .
0.0 24x2 24(4) 4yZog

The longitudinal component and its derivative also show the sdrdependence:
2 2

t

A(y;, t) = +.0 Ay, t) = ——. 5.21
vz, 1) 24y, ¥z, 1) 24yZ2 ( )
On substituting these expressions into the second line of (5:18) given by
1
yi/yio=1+ Q[ZAAQ(Q 1) +3AA(y0, )] + - -
Zz
2 4
:1_t—2 2(71_5) +3|+---
480c (y1002) 4
2 2 2
Zl_LZG) +...=1_$23<1> .
(GOCzyIOUSZ) Te [20C4/3]2tc/ T.
ap [ T 2 2
=1—-—=— ) +---=1—boT*+--- 5.22
o) <TA> ° 5-22)

where

15¢, e\

apg = > |:2( 4) +3:|
where we have used.yio = T4/60To = Cayate’ /302 from (3.4) andy,o = 2y108 =~
2y10(7S2. If we assume:, = 1/2 and¢ = &, for instance, we obtaing = 89.6. The fourth
expansion coefficient; therefore decreases from its ground-state valgeaccording to the
r?-dependence at low temperature. In spite of numerous experiments on the temperature
dependence of the spontaneous moment, only a few analyses are available in the literature
for the r-dependence of;. For example, Wohlfarth and de Chatel (1970) estimated the
coefficientbg from the observed isotherms for ZrZe(Knappet al 1971) and Zg.92Tig.ogZN2
(Ogawa 1968)r2-dependence af; was also reported for Pt (Ni, (Beille er al 1974). The
coefficient$g evaluated from linear fits to the observed results are shownintable 6. ForgrZn
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Table 6. Experimentally estimated slopes of itfedependences of, /y10 for Zrzny g, (ZrTi)Zny,
and Pi{_,Ni, alloy. The values ofT/} are reproduced from the sixth column of table 3 for

comparison.

Compound  bo(K™2) o5 (up) e TAK)  TLK
ZrZng g 74x107%  0.16 0.023 M x10* 585x10°
ZroooTigogZny 1.13x 1074 0.233 0.064 Bx10* 592x10°
Pty Nix

x = 0.429 31x10™°  0.051 0.0053 & x 10° 3.07x 10%
x = 0.452 2.9 0.104 0.015 .3x10° 246x 10
x = 0.476 2.3 0.143 0.024 7x10* 2.08x 10
x = 0.502 1.6 0.179 0.035 .8x10* 2.04x 10

and Pt _ \Ni, for x = 0.476 and 0.502, the values @f; estimated by using (5.22) compare
relatively well with those shown in table 3 (denotedb/&) obtained from th& -dependence
of the slope of the Arrott plot. For the lower Ni concentrations far PiNi, with smallerz,,
the agreement is rather poor. According to the conventional non-linear mode—mode coupling
mechanism of the SCR theory, tifedependence of will arise from the renormalization
effect of the sixth-order non-linear mode—mode coupling among spin fluctuation modes. The
observed good linearity of the Arrott plot, however, suggests the absence of higher-order
non-linear terms. It will therefore be difficult to explain the abo¥elependence on the basis
of such a mechanism. The analysis fop g4Tig.0gZn2 by Wohlfarth and de Chatel (1970)
also indicates the presence of higher-order terms in the series BftBepansion because of
the deviation from the?-dependence at higher temperature. This is also in accordance with
our preceding conclusion thai will deviate from ther2-dependence and finally follow the
273 _ 14/3)-dependence around the critical point.

In order to obtain the temperature dependenoeozoﬂet us next rewrite the first line of
(5.13) in the form

3czy10 (ag - af) =-2A;0,1)—-A (2y1002, t) +2c; (y1 — y10) 03-

Itis also represented by

o2 [1_ g (ﬂ - 1)} =o?— 2 ! [ZAI(O, H+A (2y1002, t)] . (5.23)

Y10 CzY10

With the use of the2-dependence of the thermal amplitudes, equations (5.20) and (5.21), and
on substituting the expression (5.22) jay y10, we get the following result:

1 2/ y -1
1— — = |2A,00,1) + A (2y108, t 1-2(2 -1
o? { 3Czyloa?[ (0.0 <yla° )]}[ 3<y10 )}

2

1 {2Asw<r> s (44 50ue /472 + (n/4)*] + - }

© 3eoy100 120y1002
2
t
=1- ———— 4+ 5t /4% + (& /D | — ———— Aswl(t) +- -
360%%00;1[ £/ §/0)°] = g s
2
ar T 2
=1-—(—) —=——As 5.24
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where
ar = 10c;[4+5(n&/4)% + (w&/4)7.
Itis also represented by
o2 a ( T\? 2
0 T
—=1-—F—= —) — ———m Asw(t) +---.
O-s2 40%2/31‘62/3 T; C4/3t:}/3

The spontaneous moment includes two kinds of contribution at low temperature, the
spin-waver®/2-dependence and thé-dependence from the spin fluctuations. Their relative
importance depends on the temperature range of interest:>Ph@ependence, for instance,
becomes dominant when the following inequality:

2
ar T 2

— | = Asw(t 5.25
US2 <TA> < 3czy10 sw(t) ( )
is satisfied. With the use of the expression fog,(¢) in (5.11), equation (5.25) can be
expressed as follows:

1/3
oty

t
= < 5Cu3 ~ 0.4610,12 (5.26)

C
where we have assuméd= .. Since bothr; andz. are very small for weak itinerant-electron
ferromagnets, the spin-wave contribution becomes dominant only at very low temperature.
This explains why the¥/2-dependence of the spontaneous moment is not observed for most
of the itinerant weak ferromagnets.

As long as the spin-wave contribution is neglected, the temperature depende@de of
simply given by

2 2
o ar (T 2
—=1—-—|=) +---=1—byT"+---. 5.27
o2 O‘S4(TA> g (®.27)

10/7¢(3/2) )
R

The T'%-coefficients have been estimated for several weak itinerant-electron ferromagnets
experimentally. They are summarized in table 7. From the observed valbgsaodo,, we
can estimate the parame®y by using

1 ar
Ty = —,.|—. 5.28
"= for (5.28)

In the same table, table 7, valuesiof estimated fronb; are also shown in comparison with
those reproduced from table 3 obtained from the slope of the Arrott plot of the magnetization
measurements. The general agreements are satisfactory.

We have to be very careful in evaluating from the observed slope of the? versus
T2 plot, for it depends on the temperature range used for the fit. As will be shown below,
the r?-dependence ofoz is sometimes confined within the very-low-temperature region. As
we increase the temperaturfg will soon deviate from the?-dependence and the critical

[£4/3 _ t4/3]-behaviour follows. The crossover temperature is estimated as followss2The
dependence originates from the asymptotic expansion of the digamma fupi¢iiprequation
(5.10), permissible for « 1. This is satisfied wher3/¢ > 1 for the transverse amplitude.
The same inequality also holds for the longitudinal amplitude. With the usg of /y:o0,
the condition can be represented by

32 [2Ca37%?
1L (2y10<732> =[ 30/ } 2.
Z
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Table 7. The spin fluctuation paramet&p, estimated from th@& 2-coefficient of the magnetization.

The values ofT/I are reproduced from table 3 for comparison.

Compound o5 by (K™2) T (K) T; (K) References
Ni747Al 253 0.0474 277x103  105x 10° 3.85x 10* Sasakuraral (1984)
Niz5Al 5 0.0770 0874x 1073 7.06x 10% Sasakurar al (1984)
Ni752Al248 0.0917 0589x 1073 6.06x 10% Sasakurar al (1984)
Ni755Al 245 0.110  0386x 103 520x 10% Sasakurar al (1984)
NizAl 0.075 0784x 103 79x10* 309x 10* de Boerer al (1969)
Niz55Al045 0.104 0372x 103 59x10* de Boerer al (1969)
NizgAl 24 0.125  0246x 103 50 x 10 de Boeret al (1969)
ZrZny 0.12 269x 1073 166x 10* 7.40x 10° Ogawa (1972)

Feps7C0p33Si  0.22 0400x 1073  1.28x 10* 9.9x 10>  Shimizuet al (1990)
Fey77C0p23Si 0.18 0833x 1073  1.32x 10* 12x10*  Shimizuet al (1990)
FepgaCop17Si 0.13 149x 1073 1.90x 10 15x10*  Shimizuer al (1990)
Fep91CopogSi 0.07 513x 1073 352x 10* 22x10*  Shimizuet al (1990)

Pty.53Nig.47 0121 130x 104  7.4x 10t Beille er al (1975)
Y,Nigs 0.15 854x 10>  595x10* 351x10*  Gignouxer al (1980a)
YNig 0.04 120x 103 22x10°  9.23x 10"  Gignouxer al (1980b)

Oritissimply givenby /¢, <« 1.5¢.. Toillustrate the situation, we show in figure 10 numerical
results forog /o2 as a function of/1.)?> = T2/ T?2. In the same figure>-linear behaviour
in (5.25) is also shown by dashed lines for reference. We can see that the slope of the real

1.0

0.0

Figure 10. The tz-dependence af 2 (solid thin and thick lines for. = 0.05 and 0.2). Dashed
lines represent?-linear dependence at low temperature. The discrepancy between the solid and
dashed lines at low temperature comes from the spin-wave contribution.
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r°-dependence becomes very steep and is limited to within the very-low-temperature region
for cases with smaller. in accordance with the above criterion. Reliable estimatidirdfom
experiments therefore becomes very difficult for magnets with spaadllues. If the observed
results are globally fitted with&-relation, only a moderate slope is obtained apis likely to

be underestimated. The same argument is applicable tedépendence of;. This explains

the discrepancy between the spin fluctuation paraméiersstimated from the slope of the
t?-dependence of; and those obtained from another measurements (see table 6) forsmall

5.3.2. Field dependence at low temperature. By extending our preceding arguments, the
magnetic field dependence of the moment at low temperature can be also evaluated. If we
substitute (5.4) into (5.3), our basic equation (5.3) can be expressed in the form

[1_ 3 <£ - 1)} 0% = 0% = A1) Al D]+
Y10

3 Y10 3Czy10
The temperature and field dependence dfs then given by
2 -1 1
o2 = [1— < <£ - 1)} {af+ RN [24:(y, 1) + A(ys, z)]} . (5.29)
3\ 10 yio  3czyi10

Due to the presence of the external magnetic fieldecomes finite and the low-temperature
expansion (5.9) of the transverse thermal amplitude is slightly modified as follows:

CP1-x2 1 21
224 1+y y+x2 24y+x2

The longitudinal component (y,, t) has already been given by (5.21). By using these
expressions for the thermal amplitudes, the temperature and field dependence of the moment
is finally given by

2 1 2
2_ (o2 + 1- 1 12 (220,43
2
+ 1 <2y20/xc2+ 1 >}+i|
1+2y/y.0 \1+y/xg 1+3y/y0

H) ([ T\?

) 2
V2 5 2y:0/x° 1 )
H) =5c, | 2=2 +3 + 2t - (530
ar(H) Cz[ 4 1+2y/v:0 <1+y/xc2 1+3y/y:0 (590

The spin-wave contributiodsy(7) is neglected here for simplicity. In the above derivation,
we have used again the relatiornig = T4 /60Ty andy,o =~ 2y10052. In the weak-field limit,
ar (H) shows the followingH -linear dependence:

1 3
X
Ar(y, 1) ~ Ac(y, 1) ~ /xr dx 2

where

2
yizo +2y_2‘(1):| IR (y >~ 2upH/osTy).

ar(H) =ar —25c, |5+4
Xe Xe | V20

At low temperature the-dependence of on the right-hand side of (5.30) is neglected, as far
as ther?-dependence is concerned. The field dependengdtherefore evaluated simply
by solving the equation of state in the ground state. In the presence of the external field
the induced moment = o /o, in the ground state is determined as the solution of

yo  120c;To
s o3T3

G wsH. (5.31)
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The field dependence ¢fis then given by
y/y:0= (02 —1)/2. (5.32)

By solvingo as a function o7 and putting the corresponding valueygfy.o into (5.30), we
can evaluate the field dependenceptH).

For Ph 59Nig 47the field dependence of (H) was measured fail up to 100 kOe (Beille
1975). The observed relative suppressiomuptH)/ar(0) is reproduced in figure 11. In
the same figure our numerical result from (5.30) is shown for comparison. We assumed
Ty =2 x 10K, Tp = 3 x 10° K from table 3, ands; = 0.12. The agreement between the
theory and experiments is very good.

1.0

o
o

a(H)/a(0)

0.0 . L .
0 50 100

H (kOe)

Figure 11. The magnetic field dependence of thé-coefficient of the magnetization. Solid circles
represent the observed results fog 8Nio.47.

5.4. Magnetic isotherms at general temperature

Once the spontaneous momeb%tis determined by solving (5.13), we can obtain the magnetic
isotherm by numerically integrating the first-order differential equation starting from the initial
conditiony = 0 ato = og at any given temperatureltis easy to see that the scaling property

also holds for solutions thus obtained. In placeg@findy, let us define reduced parameters,
o andy, by

4/3
_ N A1) Caatd®
0Q = 050 y=<y1005>y= - y = 3

Zz Zz

v = (v1002) 7.
Then (5.3) can be represented by
24:(y, 1) + Ay, 1) — 2y +y,) + 502 =3 (5.33)

whereX(y, t) = A(y,t)/A(0,t;) andt is given byt.(T/T;). The lower bound ofc. for
A;(y,t) is also determined by the parameter= (yloasz)y_z obtained by solving (5.33) for
y = 0. The differential equation (5.33) foras a function ot at each reduced temperature
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2.0 T T T T T T

0.0 0.5 1.0 1.5 2.0
y/A(O,t)

(b)

Figure 12. Arrott plots of calculated magnetic isotherms for= 0.05 (a) and 0.2 (b). The curves,
from the top, correspond t6/7. = 0, 0.5, 0.9, 1, 1.1, 1.5, and 2, respectively.

T /T, now depends only on a single parameterThe behaviour of the solutions is therefore
determined by the magnitude©f This means that the temperature and the field dependences
of o for any weak ferromagnets look the same if they have the samaedo, T, andH are
properly scaled. The result is consistent with our preceding results for the temperature and
the field dependencesoj— andys, as well as our discussion on their ranges of validity. In the
last figure, figure 12, the Arrott plots of numerically calculated magnetic isotherms are shown
for ¢, = 0.05 and 0.2 in reduced units.
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6. Discussion

In this paper, we have discussed a lot of quantitative magnetic properties of weak itinerant
ferromagnets on the basis of the spin fluctuation mechanism. We have studied both their
temperature and magnetic field dependences throughout a wide temperature range by dealing
with the magnetic equation of state. It seems to be widely accepted that the Arrott plot of
magnetic isotherms shows good linearity with nearly the same slopes throughout the wide
temperature and external field range for weak itinerant-electron magnets. They are sometimes
globally fitted well with the simple Stoner—Wohlfarth formula (5.1). If we inspect the observed
behaviours in more detail, we will however find slight deviations. For instance, the presence
of the T2-dependence on temperature of the fourth expansion coeffiEienas recognized
almost 30 years ago (Wohlfarth and de Chatel 1970). Since then it has not been seen as
very important either theoretically or experimentally. That is because the discrepancies are
sometimes very small and not very clearly evident. Their ranges of deviations are also very
limited. We have clarified in the present paper that the actual magnetic isotherms for weak
ferromagnets are not so simple and do show a variety of behaviours. The slight deviations have
their own meaning and we can draw valuable information from them on the spin fluctuation
spectra.

The underlying motif of this study is the emphasis on the predominance of the roles of
collective magnetic excitations over those of the single-particle ones in the magnetic properties
of itinerant-electron magnets. This is true even in the low-temperature region including the
ground state with no thermal spin fluctuation amplitude. Our approach is based on a very
simple assumption on the conservation of the local spin amplitude and the requirements from
the rotational symmetry of the system. In the Stoner—Wohlfarth theory most of the magnetic
properties were explained as associated with single-particle excitations of the system, while
the collective magnetic excitations are neglected. As an approach to extending the Stoner—
Wohlfarth picture, the SCR theory tried to include the small-amplitude fluctuations around the
mean-field free energy. Itis therefore appropriate when the amplitude of the fluctuations is very
small. Although the roles of thermal spin fluctuations are emphasized at finite temperature,
this is still based on the single-particle picture in the ground state. The non-linear mode—mode
coupling constants are therefore assumed to be given by the form of the density-of-states curve
around the Fermi energy.

We start from the opposite limit. From our point of view, weak itinerant magnets are
rather well characterized by the dominant spin fluctuation amplitudes. This is particularly
due to the presence of the quantum component of fluctuations. The appearance of small
uniform static moments does not indicate small fluctuation amplitudes. It results from the
presence of dominant fluctuation amplitudes. Because of the total-amplitude conservation,
the increase of spin fluctuation amplitudes leads to a reduction of the magnitude of the ordered
moments. Collective Bose-like excitations therefore always play major roles in almost all
aspects. In this respect the situation looks quite similar to the case of Heisenberg magnets.
Then, what kinds of property will distinguish itinerant-electron systems from Heisenberg
magnets? According to the SCR theory, for instance, the amplitude of the spin fluctuations
increases with temperature in strong contrast with the case for Heisenberg magnets. A lot of
magnetic properties of itinerant weak ferromagnets have been explained in association with
this variation of the amplitude.

Our answer to the above question is stated as follows. One is the difference in damping
mechanism of the magnetic fluctuations. Especially in the case of the itinerant ferromagnets,
the Landau damping mechanism prevails in most of the wave-vector region. Its magnitude is
in general larger for itinerant-electron systems. The spectral shape of the magnetic excitations
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is also different. We have to introduce two independent param&ensd 7, for the spectral
widths in the energy and wave-vector spaces. They correspond to the single paraof¢her
exchange coupling of the Heisenberg magnets. Another one is associated with the presence
of large-amplitude quantum fluctuations. We have argued that the qualitative differences in
properties between these two classes of magnets originate from the presence of quantum spin
fluctuations. This means that taking explicit account of the quantum fluctuations is necessary
for the proper theoretical description of weak itinerant-electron magnets. On the other hand,
the amplitude conservation and the predominance of collective magnetic degrees of freedom
are common to Heisenberg magnet and itinerant-electron systems.

In summary, the following consequences are all derived from our theoretical studies by
taking explicit account of the effects as stated above:

e The magnetic equation of state is mainly determined by the response of the spin
fluctuations to the external magnetic field. This is true evenin the ground state. Therefore
the non-linear expansion coefficienfg of the magnetic free energy are determined by
the spectral properties of spin fluctuations.

e Scaling behaviour is predicted for the temperature dependence of the magnetic
susceptibility as well as various properties in the ordered state. We showed for instance
that the ratias,. /oy is almost uniquely determined by the single param&tgip.

e At the critical temperature, we predicted the critical magnetization pragessim?®.

e We can establish a prescription for calculating the temperature dependence of the
spontaneous magnetic moments beldw The magnetic equation of state is also
calculated rather easily throughout a wide temperature range without dealing with
complicated integro-differential equations.

e We derived an explicir?-dependence on temperature of the squared spontaneous
magnetizationo? at low temperature and a [+ (t/1.)*3]-dependence around the
critical temperature, including their precise numerical coefficients, that agree well with
experiments.

¢ We must be careful to note that the real criticaH1r/¢.)*3]-behaviour occurs in a very
restricted region aroung for compounds with smallet.

e We showed that th&2-dependence of? at low temperature is observed over a wider
temperature range for compounds with largevalues.

e The 7%/2-dependence af? due to the spin wave is generally confined to the region of
extremely low temperature for weak itinerant ferromagnets.

e The fourth-order expansion coefficieiy of the free energy shows a temperature
dependencerf-dependence at low temperature and{1z/1.)¥3]-dependence around
the critical temperature) that is of the same form as that on the magnetization. In our
theoretical framework this parameter is therefore no longer a constant. On the other hand,
it has the meaning of an important theoretical input parameter in the SCR theory that
gives the non-linear mode—mode coupling among various thermal spin fluctuation modes.

In the present paper we are only concerned with the magnetic properties of the system.
The results of the present paper will have some significant consequences for the various
related properties. For instance, the metamagnetic transitions observed in itinerant-electron
magnets are usually treated in terms of the magnetic equation of state obtained by assuming
a single-particle density-of-states cuwé). If our arguments are valid, we have instead to
take into account the effects of magnetic excitations on the equation of states. Especially in
describing the states with small moments before the metamagnetic transitiof-fiieurve
is instead governed by the spin fluctuation mechanism. The validity of the present picture
on the magnetic equation of states is clearly exhibited by the recent non-linear magnetization
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measurements on the semiconducting compound FeSi (Koyama000). TheM—H curve

derived by using the density-of-states cup(e) gives the wrong sign for the fourth expansion
coefficientF; The observed qualitative behaviours are in accord with our present mechanism
(Takahashi 1998, Takahasghizl 2000). Because of the Maxwell relation, our temperature and
field dependences of the magnetic moments are also closely related to the field dependence of
the magnetic specific heat.
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