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Abstract
On the basis of the spin fluctuation mechanism,magnetic properties of itinerant-
electron weak ferromagnets are discussed, for the wide temperature range
from the ground state to the paramagnetic state, explicitly taking into account
the effects of zero-point quantum spin fluctuations. Particular attention is
focused on properties of the ordered phase. The temperature dependence of the
spontaneous magnetic moment, for instance, is quantitatively analysed in close
comparison with experiments. It is also shown that the fourth-order expansion
coefficient of the free energy in powers of the static magnetic moment is
temperature dependent, and therefore magnetic isotherms are not so simple as
was originally anticipated in the Stoner–Wohlfarth theory.

We explicitly examine the effect of the spin-wave mode on the transverse
spin fluctuation amplitude, and show that this effect is crucial for the proper
theoretical description of magnetic behaviours in the ordered state.

1. Introduction

Collective spin fluctuations play predominant roles in the magnetic properties of itinerant-
electron magnets, while the single-particle excitations have minor roles. Spin fluctuation
theories based on the above picture have been quite successful in explaining and predicting
various interesting magnetic properties of the system (Moriya 1985, Lonzarich and Taille-
fer 1985, Takahashi 1986). However, there are still unsolved problems. One long-standing
problem is related to the description of the ordered phase below the Curie temperatureTc.
The difficulty arises because it is sometimes not so easy to take into account the restriction
caused by the rotational invariance of the system in the spin space. A naive treatment (see,
for instance, Murata and Doniach (1972) and Yamada (1975)) leads to a fictitious first-order
phase transition. In the self-consistent renormalization (SCR) spin fluctuation theory (see,
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for instance, Moriya 1985), the temperature dependence of the spontaneous magnetizationM

for weak itinerant magnets was originally derived by taking into account only the transverse
modes of the thermal spin fluctuations with respect to the direction of the static uniform mo-
ment (Moriya and Kawabata 1973a, b). As the typical temperature dependence of the squared
spontaneous moment, a qualitativeT 2-dependence at low temperature and a(T

4/3
c − T 4/3)-

dependence around the critical temperatureTc were predicted and were later confirmed by
experiments. On the other hand, based on the single-particle picture, the Stoner–Wohlfarth
theory (Stoner 1936, Wohlfarth 1968) predicted an overall(T 2

c − T 2)-dependence belowTc
(Edwards and Wohlfarth 1968). The observed temperature dependence was sometimes sim-
ply fitted with the Stoner–Wohlfarth theory. No quantitative comparison with experiments,
however, has yet been made on the basis of the spin fluctuation mechanism.

If we take into account both the transverse and the longitudinal components of the fluctu-
ations required by the rotational invariance, we have to solve two coupled integro-differential
equations simultaneously, each of which is related to the condition determining the transverse
and the longitudinal components of the magnetic susceptibilities. Numerical solutions of these
equations show that the first-order discontinuity is reduced or will one hopes be eliminated
(Lonzarich and Taillefer 1985). The nature of the solution has not been fully discussed yet.
To save computational effort, an interpolation scheme for the mode-coupling effect was also
proposed by Lonzarich and Taillefer, giving a smooth evolution between the ground state and
the critical point without showing a first-order transition. Its theoretical basis is, however, not
too clear.

The spin fluctuation theories mentioned above only take into account the effects of thermal
spin fluctuations. Particular interest has been shown in the effects of renormalization on the
second expansioncoefficient of the magnetic free energy in terms of the uniform magnetization
M, i.e. the temperature dependence of the magnetic susceptibility. Therefore the magnetic
equation of state has not so far been discussed very thoroughly. Although the effects of spin
fluctuations are included in the description of finite-temperature properties, the magnetic field
dependence ofM is simply assumed to be given by using the Stoner–Wohlfarth theory in the
ground state and it is determined by the density-of-states curve around the Fermi energy. The
SCR theory particularly emphasizes the significance of the self-consistent treatment in deriving
the Curie–Weiss-like temperature dependence of the magnetic susceptibility. This means that
we have to take into account the change of the spin fluctuation spectrum against temperature
and the external field variations. The same spectral change ought to have some effect on
the quantum amplitude. However, it is simply assumed to be negligible. Though the spin
fluctuation effects are included at finite temperature, the ground state is still assumed to be well
described in terms of the single-particle density of states like in the Stoner–Wohlfarth theory.

I first pointed out the significant role of quantum spin fluctuations in the magnetic
properties of weak itinerant-electron magnets. According to my idea, the ground-state and
finite-temperature properties have to be treated within the same theoretical framework. In
order to implement this idea, an interesting approach has been proposed. It is based on solving
a single equation containing both the transverse and the longitudinal magnetic susceptibilities.
Because the quantities are related to each other through their differentials with respect to the
magnetizationM, the magnetic equation of state is obtained by integrating the equation by
regarding it as a first-order differential equation.

The purpose of this paper is to present a theoretical description of magnetic properties
of weak itinerant-electron magnets by studying the magnetic equation of state throughout a
wide temperature range. In this way we can discuss their temperature and magnetic field
dependence from a unified point of view. Our main interest is in giving a consistent and
satisfactory description of properties in the ordered state by solving the differential equation.
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Although an attempt has been made to find solutions by using their continuation from the high-
field side (Takahashi 1992), the situation is still not very clear compared with the paramagnetic
cases because of the difficulty of finding the initial condition of the equation. In this regard,
we explicitly examine the roles of the spin-wave modes in the ordered state. In most previous
treatments this effect is simply neglected; the assumption is made that it is very small. We
show here how to cope with the difficulty involved in determining the initial condition by
taking explicit account of the presence of spin-wave modes.

The absence of a fully consistent theoretical treatment of the ordered state is the reason
that quantitative comparisons between theoretical predictions and experiments have not so
far been made on the basis of the spin fluctuation mechanism. In the present paper, various
observed temperature and external field dependences are quantitatively analysed on the basis
of the results of this paper. In our previous studies we have already given a prescription
for dealing with magnetic properties in the paramagnetic phase. In order to achieve a self-
contained presentation, we will duplicate some of our former arguments here in referring to
experimental results.

In the following we represent the magnetizationσ per magnetic atom in units ofµB and
the external magnetic fieldh in energy units, i.e.,

M = N0µBσ h = gµBH

whereN0 is the number of magnetic atoms in the crystal andg is the gyromagnetic ration,
assumed to be 2. The magnetic susceptibilityχ is measured in units of(gµB)

2, given in the
present units by

χ/N0 = σ/(2h).

2. Theoretical framework based on the spin fluctuation mechanism

According to Takahashi (1986) the present study is based on the following sum rule:〈
S2
i

〉
=
〈{
S+
i , S

−
i

}/
2 +
(
δSzi

)2〉 + σ 2/4 (2.1)

where

δSzi = Szi − 〈Szi 〉 σ = 2
〈
Szi

〉
which indicates that the total spin fluctuation amplitude is almost constant (see also Takahashi
1990, 1992, 1994, 1997a, b, 1998, Takahashi and Sakai 1995, 1998). At the outset, it is worth
recognizing that the spin fluctuation amplitude is not so small when the quantum component is
included, as was confirmedexperimentally. This is why we employ the sum rule and do not rely
on the expansion in terms of the amplitude of the spin fluctuations. If we extract the thermal
spin fluctuation amplitude, we find that it increases with increasing temperature aboveTc as
was actually observed in neutron scattering experiments on MnSi (Ishikawaet al 1985). The
total amplitude, however, does not seem to show a monotonic increase. We show in figure 1
the temperature dependence of the total spin fluctuation amplitude for the same compound
MnSi as was observed in the neutron scattering experiment (Ziebecket al 1982) in comparison
with the calculated thermal spin fluctuation amplitude. The discrepancy between experiments
and the theoretical curve at low temperature clearly shows the presence of a sizable quantum
amplitude. The weak temperature dependence of the total amplitude compared with the
thermal component indicates that the quantum amplitude is also temperature dependent. The
effect of zero-point spin fluctuations has also been considered by expanding the free energy in
powers of the spin fluctuation amplitude up to the fourth-order term (Solontsov and Wagner
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Figure 1. The temperature dependence of the observed spin fluctuation amplitude for MnSi (solid
circles), using an energy resolution of 12 THz. The solid line represents the calculated thermal
spin fluctuation amplitude.

1994, 1995). It is however not so clear why such an expansion in terms of large fluctuation
amplitudes is justified when the quantum component is included.

We have already derived various interesting consequences of the conserved amplitude
(2.1), which were confirmed by later experimental investigations (Yoshimuraet al 1987, 1988,
Shimizuet al 1990, Nakabayashiet al 1992). Before we present our theoretical framework,
we describe the behaviour of the spin fluctuation spectrum and amplitudes for weak itinerant-
electron magnets.

2.1. Spin fluctuation spectrum

From the fluctuation-dissipation theorem of statistical mechanics, the spin fluctuation
amplitude is expressed in terms of the response of the system, i.e. in terms of the imaginary
part of the dynamical magnetic susceptibilityχ(q, ω). For instance, in the paramagnetic
phase, it is represented by〈

S2
i

〉
= 3

N2
0

∑
q

∫ ∞

−∞
dω

2π
coth(βω/2) Imχ(q, ω)

= 3

N2
0

∑
q

∫ ∞

0

dω

π
{1 + 2n(ω)} Imχ(q, ω). (2.2)

That is, 〈
S2
i

〉
=
〈
S2
i

〉
Z

+
〈
S2
i

〉
T

(2.3)
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where we have defined quantum (zero-point) and thermal amplitudes,denoted by the subscripts
Z andT , by decomposing the factor coth(βω/2) into a constant term and the Bose factorn(ω)

as follows:

coth(βω/2) = 1 + 2n(ω) n(ω) = 1

eβω − 1
.

In the case of weak itinerant-electron ferromagnets, the imaginary part of the dynamical
magnetic susceptibility is given by the following double Lorentzian spectrum in the small-
q, ω space:

Imχ(q, ω) = χ(q)
ω�q

ω2 + �2
q

(2.4)

where

χ(q) = χ(0)

1 +q2/κ2 �q = �0q(κ
2 + q2)

where κ represents the inverse of the magnetic correlation length. The aboveq-linear
dependence of the damping constant�q results from the Landau damping mechanism. Its
validity is confirmed experimentally for MnSi (Ishikawaet al 1985) and Ni3Al (Bernhoeft
et al 1983, 1986). On the basis of our previous studies, we represent the above spectrum in a
parametrized form by introducing the energy scalesT0 andTA defined by

T0 = �0q
3
B

/
2π TA = N0q

2
B

/
[2χ(0)κ2]

(
q3
B = 6π2N/V

)
whereqB is the zone-boundary wave vector for the crystal withN magnetic atoms within the
volumeV . These parameters give measures of the spectral widths in the energy and wave-
vector spaces, respectively, which correspond to the exchange coupling constant in the case
of Heisenberg magnets. They are directly estimated from neutron scattering experiments
(Ishikawa et al 1985, Bernhoeftet al 1983, 1986) or from analyses of the temperature
dependence of NMR relaxation time measurements (Hioki and Masuda 1977, Kontani 1977,
Yasuokaet al 1978, Umemura and Masuda 1983, Yoshimuraet al 1987, 1988). The imaginary
part, Imχ(q, ω), the damping constant,�q , andχ(q) are then given in the reduced form by

Imχ(q, ω)/N0 = T0

2TAT

ξx

ξ2 + u2 u = x(y + x2)/t

�q = 2πT0x(y + x2) (2.5)

χ(q) = N0

2TA

1

y + x2

whereξ = ω/2πT , t = T/T0, x = q/qB , andy = κ2/q2
B . The change in spectral form of

the fluctuations is therefore taken into account through the parametery. In this sensey plays
a significant role in our following discussions. It has the meaning of the reciprocal of the
dimensionless magnetic susceptibility.

2.2. Thermal and quantum spin fluctuation amplitudes

With the use of the parametrized form of the spectrum, we can now explicitly evaluate the
thermal and the quantum spin fluctuation amplitudes as functions oft and y. After ω-
integration, the thermal amplitude can be represented in the following form as a wave-vector
integral: 〈

S2
i

〉
T
(y, t) = 2

N2
0

∑
q

∫ ∞

0

dω

π
n(ω) Imχ(q, ω) = 9T0

TA
A(y, t) (2.6)
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where

A(y, t) =
∫ 1

0
dx x3 [ln u − 1/2u − ψ(u)] (x = q/qB)

whereψ(u) is the digamma function defined by

lnu − 1/2u− ψ(u) = 2
∫ ∞

0
dt

t

e2πt − 1

1

t2 + u2 .

Because of the presence of the Bose factor in its definition, the amplitude has dependence on
both the temperaturet and the reciprocal susceptibilityy. The critical thermal amplitude for
y = 0 is, in the small-t limit, given by

A(0, t) =
∫ 1

0
dx x3 [ln uc − 1/2uc − ψ(uc)] (uc = x3/t)

= 1

3
t4/3

∫ 1/t

0
ds s1/3 [ln s − 1/2s − ψ(s)] � 1

3
C4/3t

4/3 (2.7)

where

Cα =
∫ ∞

0
ds sα−1 [ln s − 1/2s − ψ(s)] = πζ(α)�(α)

(2π)α sin(πα/2)
= 1.006089· · · (for α = 4/3).

On the other hand, itsy-dependence around the origin is estimated as follows. Note that only
the narrow region around the origin of the integrand of (2.7) is affected wheny changes its
magnitude fory � 1. Since [lnu− 1/2u− ψ(u)] is approximated by 1/2u for u � 1 there,
the amplitude is dominated by the following singular

√
y-dependence:

A(y, t) − A(0, t) �
∫ 1

0
dx x3

(
1

2u
− 1

2uc

)

= t

2

∫ 1

0
dx

(
x2

y + x2 − 1

)
= − t

√
y

2
tan−1

(
1√
y

)

� −πt

4

√
y (for y � 0). (2.8)

The critical dependence ofA(y, t) ony andt is therefore summarized by

A(y, t) � 1

3
C4/3t

4/3 − πt

4

√
y + · · · (for t, y � 1). (2.9)

The quantum amplitude, on the other hand, has no explicit temperature dependence,
though it still has an implicity-linear dependence given by〈

S2
i

〉
Z
(y) =

〈
S2
i

〉
Z
(0) − 9T0

TA
czy. (2.10)

The abovey-linear coefficient can be estimated as follows. Since taking a Lorentzian shape for
the spectrum is only justified in the low-frequency region, we have in general to introduce the
ω-dependence of the damping constant�(q, ω) in the higher-frequencyregion. The first-order
y-derivative of the quantum amplitude is then represented by

∂

∂y
〈S2〉Z(y) = 3

N2
0

∑
q

∫ ∞

0

dω

π

{
∂

∂y
[χ(q)�(q, ω)]

ω

ω2 + �2(q, ω)

− [χ(q)�(q, ω)]
2ω�(q, ω)

[ω2 + �2(q, ω)]2

∂�(q, ω)

∂y

}
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� − 3

N2
0

∑
q

χ(q)
∂�q

∂y

∫ ∞

0

dω

π

2ω�2
q[

ω2 + �2
q

]2
= − 3

N2
0

∑
q

χ(q)
∂�q

∂y

∣∣∣∣
y=0

.

We first note that they-dependence mainly arises from the low-frequency region in the in-
tegrand where�(q, ω) is very small. The first term is then neglected since the product
[χ(q)�(q, ω)] is almosty-independent there, as we see by recalling the expressions forχ(q)

and�q in (2.5). They-linear coefficient mainly comes from the second term, shown as the sec-
ond line. Since its spectral intensity is now confined to within the low-frequency region, theω-
dependenceof�(q, ω) of this term is well approximated by�q = �(q,0). Afterω-integration
it is given as an average ofχ(q)∂�q/∂y over the whole Brillouin zone. From the expressions
for�q andχ(q) in (2.5), we can see that it has a magnitude of the order ofT0/TA. If we simply
extrapolate the expressions of (2.5) throughout the whole Brillouin zone, we obtaincz = 1/2.
Depending on the behaviours ofχ(q) and�q as functions ofq over a wide area in wave-vector
space, the value ofcz will show some slight variation, but its magnitude is of the order of unity.
In this way,y-dependence of the quantum amplitude is present and is caused by the change
of the spin fluctuation spectrum. The effect is in general not so small and is not neglected.

With the use of the above expressions for both of the spin fluctuation amplitudes, we
obtain the following relation between them at the critical temperaturet = tc = Tc/T0:〈

S2
i

〉
tot

=
〈
S2
i

〉
Z
(0) +

〈
S2
i

〉
T
(0, tc) =

〈
S2
i

〉
Z
(0) +

9T0

TA
A(0, tc).

Weak itinerant-electron ferromagnets are characterized by their smalltc-ratios. From the
expression forA(0, t) in (2.7), the thermal amplitude for these magnets remains always very
small becauset , of the same order oftc, is very small, whereas the quantum component
〈S2

i 〉Z(y) has a large amplitude, of the same magnitude as the total spin fluctuation amplitude.
In contrast, their size difference is reversed for Heisenberg magnets because of the localization
of the spectral weight within the low-energy region. To show the clear distinction between
these types of magnet, the magnitudes of the critical amplitudes for the two components are
compared in table 1. It is important to realize from the table that weak itinerant-electron
magnets are characterized by the presence of quantum spin fluctuations with large amplitude
throughout the wide temperature range of interest. For this reason, the quantum amplitude has
key significance in our understanding of the properties of these magnets.

Table 1. Comparison of the magnitudes of the thermal and the quantum amplitudes.

Compound Heisenberg system Itinerant weak ferromagnets

Thermal 〈S2
i
〉T (0, tc) ∼ O(1) 〈S2

i
〉T (0, tc) � 1

Quantum 〈S2
i
〉Z(0) � 1 〈S2

i
〉Z(0) ∼ O(1)

Our basic idea for deriving the magnetic equation of state is based on the following
observations on the behaviour of the spin fluctuations in the presence of a static uniform
moment:

• The magnitude of the local squared spin operatorS2
i has an almost conserved expectation

value. This assertion seems to be well justified for Heisenberg magnets. What we assume
is that it is also applicable to the itinerant-electron magnets.
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When a spontaneous moment appears at low temperature belowTc or in the presence
of an external magnetic field, the expectation has to be given by the sum of the squared
static moment|〈Si〉|2 and the squared fluctuation amplitude〈δS2

i 〉 (δSi = Si − 〈Si〉).
• The anisotropy of the spin fluctuation amplitude has to be taken into account.

This effect arises from the anisotropy of the reciprocals of the magnetic susceptibilities.
Depending on the direction of the external field applied to the system relative to
the static moment, the magnitudes of the perpendicular and the longitudinal magnetic
susceptibilities become different. They are, respectively, given byH/M and∂H/∂M, or
in dimensionless units byy andyz defined below:

y = κ2/q2
B = 1

TA

h

σ
(2.11)

yz = κ2
z

/
q2
B = 1

TA

∂h

∂σ
= y + σ

∂y

∂σ
.

The effect is included by assuming anisotropic inverse squared correlation lengthsκ2 and
κ2
z in evaluating spin fluctuation amplitudes.

• The effect of the presence of spin-wave mode also has to be taken into account for
evaluating the transverse amplitude.

Because of the appearance of the spin-wave mode around the origin of the wave-vector
space, the transverse component of the dynamical susceptibility is affected there. The
effect has often been neglected in previous studies. Later we will discuss the importance
of this effect in more detail.

If we take into account the first two of these effects, the sum rule condition in the
paramagnetic state, for instance, is expressed by

3T0

TA
[2A(y, t) + A(yz, t) − cz(2y + yz)] +

σ 2

4
= 9T0

TA
A(0, tc). (2.12)

The magnetic equation of state is now derived as follows. According to Takahashi (1986),
equation (2.12) can be regarded as a first-order ordinary differential equation fory as a
function ofσ if we substituteyz in (2.11) into (2.12). By solving foryz in terms ofy and
σ , we can determine the first derivative∂y/∂σ as a function ofy andσ . What we need to
do is therefore to deal with a single first-order differential equation rather than two coupled
integro-differential equations as in the case of the SCR theory. The rotational invariance
requirement is automatically satisfied.

3. Equation of state in the ground state

As a simple illustration, let us first reproduce our previous results (Takahashi 1986) on the
magnetic isotherm in the ground state. Because of the absence of the thermal spin fluctuation
amplitude, equation (2.12) reduces to the following simplified form of a linear first-order
differential equation fory:

σ 2

4
− 3czT0

TA
(2y + yz) = σ 2

4
− 3czT0

TA

(
3y + σ

∂y

∂σ

)
= 9TA

T0
A(0, tc). (3.1)

We can easily find its solution by assuming that

y = y00 + y10σ
2. (3.2)

On substituting (3.2) into (3.1), the coefficientsy00 andy10 are determined. They are given by

y00 = −A(0, tc)

cz
= − TA

9czT0

〈
S2
i

〉
T
(0, tc) y10 = TA

60czT0
. (3.3)
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The saturation momentσs is obtained from the conditiony = 0 (i.e.,h = 0):

σ 2
s = −y00

y10
= 1

czy10
A(0, tc) = 60T0

TA
A(0, tc)

= 20T0

TA
C4/3t

4/3
c (for tc � 1) (3.4)

where thet-dependence of the thermal amplitude of (2.7) is used in the last line. In terms of
σ 2
s , the solutions fory andyz are also expressed as follows:

y = y10σ
2
s

(
σ 2

σ 2
s

− 1

)

yz = y + 2y10σ
2 = y10σ

2
s

(
3
σ 2

σ 2
s

− 1

)
= 2y10σ

2
s + 3y.

(3.5)

The σ 2-linear dependence ofy in (3.5) is equivalent to the free-energy expansion in
powers ofM up to the fourth-order term. Let us take the expansion and the magnetic equation
of states in terms of the original thermodynamic variableM andH as follows:

F(M) = F(0) +
1

2(gµB)2χ0
M2 +

1

4
F10M

4

H = ∂F (M)

∂M
= 1

(gµB)2χ0
M + F10M

3.

(3.6)

Then in reduced units the second line of (3.6) is also represented by

2h = N0

χ0
σ +

F̄ 10

4
σ 3 F̄ 10 = (2µB)

4N3
0F10 = 2T 2

A

15czT0
. (3.7)

The above result is interesting because the fourth-order coefficientF̄ 10 is unrelated to the
form of the single-particle density-of-states curveρ(ε) around the Fermi levelεF , in contrast
with the situation in Stoner–Wohlfarth theory and that in SCR theory. According to (3.7), it
is related instead to the collective magnetic excitation spectrum, i.e. the spectral widthsT0
andTA of spin fluctuations. The reason for this can be given as follows. Even in the ground
state with no thermal fluctuation amplitude, the response of the system is still governed by the
reaction of low-lying magnetic excitations to the external perturbation of the magnetic field. In
this case, the quantum amplitude is suppressed and its reduced amplitude is transformed into
a uniform magnetization since the total amplitude remains unchanged. The field dependence
of the magnetization is therefore determined by the property of magnetic fluctuation. On the
other hand, excitations associated with the redistribution of single-particle occupation numbers
are higher in energy.

We can check the validity of (3.7) experimentally. The value ofF̄ 10 is estimated from the
magnetization measurements. If we plot the observed squared magnetizationM2 against
the ratioH/M, i.e. in the form of an Arrott plot (Arrott 1957),̄F 10 can be obtained from
the slope of the curve. We show in the second column of table 2 values ofF̄ 10 thus obtained
experimentally for several compounds at low temperature. These values compare well with
the values of 4T 2

A/15T0 in the third column calculated by using the parametersT0 andTA
obtained from other independent measurements. The values ofT0 andTA shown in the table
are those estimated directly from neutron scattering experiments for MnSi (Ishikawaet al
1985) and Ni3Al (Bernhoeftet al 1983, 1986). The values ofT0 can also be evaluated from
the analysis of the temperature dependence of the NMR relaxation time; those listed in the
table are estimated from the measurements by Yasuokaet al (1978), Umemura and Masuda
(1983), Hioki and Masuda (1977), Kontani (1977), and Yoshimuraet al (1987) for MnSi,
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Ni74.7Al25.3, Sc3In, ZrZn2, and Y(Co1 − xAl x)2, respectively. The values ofTA in the table are
then determined from theseT0 and the observed values ofσs andTc by using (3.4). It is quite
difficult to envisage a close correlation between the observedF̄ 10 and the values obtained
from (3.7) if the fourth expansion coefficientF10 was determined by the density-of-states
curve around the Fermi energyεF ; i.e.

F10 = [ρ′(εF )/ρ(εF )]2 − ρ′′(εF )/3ρ(εF ).

Table 2. Comparison of the results from (3.7) with the observed coefficientsF̄10 given by (a)
Blochet al (1975) (at 4.2 K), (b) Sasakuraet al (1984), (c) Takeuchi and Masuda (1979), (d) Ogawa
(1976), and (e) Yoshimuraet al (1987). The values ofT0 andTA marked with the superscripts†
were obtained from neutron scattering experiments.

Compound F̄ 10 (K) 4T 2
A
/15T0 (K) T0 (K) TA (K)

MnSi(a) 9.71× 103 5.0 × 103 231† 2.08× 103†

6.9 × 103 171 2.11× 103

Ni3Al 0.71× 105 3590† 3.09× 104†

Ni74.7Al25.3
(b) 1.03× 105 1.53× 105 2860 4.05× 104

Sc3In(c) 2.00× 105 0.66× 105 565 1.18× 104

ZrZn2
(d) 1.05× 104 6.5 × 104 321 8.83× 103

Y(Co0.87Al0.13)2
(e) 2.1 × 104 1.57× 104 2290 1.16× 104

Y(Co0.85Al0.15)2 1.0 × 104 0.51× 104 2119 6.34× 103

Y(Co0.83Al0.17)2 1.6 × 104 0.63× 104 2093 7.03× 103

With the use of (3.7) we can also derive useful relations that enable us to estimate the
microscopic spin fluctuation parametersT0 andTA. By eliminating eitherTA or T0 from both
of (3.4) and (3.7), we can represent the ratiosT0/Tc andTA/Tc in terms ofTc, σs , andF̄ 10,
quantities readily available from macroscopic magnetic measurements:(

Tc

T0

)5/6

=
√

30czσ 2
s

40C4/3

(
F̄ 10

Tc

)1/2

(
Tc

TA

)5/3

= σ 2
s

20C4/3

(
2

15cz

)1/3(
Tc

F̄ 10

)1/3

.

(3.8)

We show in table 3 the values ofT0 andTA estimated from (3.8) for the compounds listed
in table 2 by using observed values ofTc, σs , andF̄ 1. The table also includes results of the
analysis for (ZrTi)Zn2, (ZrHf)Zn2 (Ogawa 1968), FexCo1−xSi (Shimizuet al 1990), Y2Nix
(Nakabayashiet al 1992), Y2Ni15,Y2Ni17,YNi3 (Gignouxet al 1980a, b), and Pt1−xNix
(Beille et al 1974, Beille 1975).

The values ofT0 andTA in the last two columns (denoted byT †
0 andT †

A) are reproduced

from table 2 for comparison. The values ofT
†
A for FexCo1−xSi are determined from the

slope of theH/M versusM4 plot at the critical temperature (Shimizuet al 1990) as will be
explained in a later section.

4. Magnetic equation of state in the paramagnetic phase

In the paramagnetic state, the magnetic equation of state is obtained by solving the following
equation fory as a function ofσ :

3T0

TA
[2A(y, t) + A(yz, t) − cz(2y + yz)] +

σ 2

4
= 9T0

TA
A(0, tc). (4.1)
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Table 3. Values ofT0, TA estimated experimentally from the observedTc, σs , andF̄ 1 by (a) Bloch
et al (1975), (b) de Boeret al (1969), (c) Umemura and Masuda (1983) (powder), (d) Sasakura
et al (1984), (e) Hioki and Masuda (1977) (powder), (f) Takeuchi and Masuda (1979), (g) Ogawa
1976, and (h) Knappet al (1971).

Compound Tc (K) σs (µB) F̄ 1 (K) T0 (K) TA (K) T
†
0 (K) T

†
A

(K)

MnSi(a) 30 0.4 9.71× 103 155 2.18× 103 231 2.08× 103

Ni3Al (b) 41.5 0.075 1.30× 105 2760 3.67× 104 3590 3.09× 104

Ni3Al (c) 40 0.0692 1.68× 105 2703 4.13× 104

Ni74.7Al25.3
(d) 23.2 0.047 1.03× 105 3840 3.85× 104

Sc3In(e) 6 0.081 4.72× 105 479 9.21× 103 565 1.18× 104

Sc0.7575In0.2425
(f) 5.5 0.045 2.00× 105 286 1.46× 104

ZrZn2
(g) 21.3 0.12 1.05× 104 1390 7.40× 103 321 8.83× 103

ZrZn1.9
(h) 26 0.16 8.21× 103 1110 5.85× 103

Zr0.92Ti0.08Zn2 40 0.233 1.49× 104 628 5.92× 103

Zr0.8Ti0.2Zn2 49.4 0.278 1.68× 104 536 5.81× 103

Zr0.9Hf0.1Zn2 10.2 0.078 1.20× 104 1110 7.07× 103

Y(Co1−xAlx)2
x = 0.13 7 0.042 2.10× 104 1.92× 103 1.23× 104 2.290× 103 1.16× 104

x = 0.14 15 0.094 1.10 1.44 0.772
x = 0.15 26 0.138 1.00 1.41 0.726 2.119 0.634
x = 0.16 22 0.130 0.95 1.28 0.676
x = 0.17 16 0.095 1.56 1.27 0.846 2.093 0.703
x = 0.18 9 0.063 2.77 0.984 1.01
x = 0.19 7 0.040 4.11 1.28 1.40

FexCo1−xSi

x = 0.36 23 0.11 5.79× 104 0.69× 103 1.2 × 104 0.727× 103

x = 0.48 48 0.19 3.16 0.87 1.0 0.727
x = 0.67 55 0.22 3.82 0.68 0.99 0.725
x = 0.77 40 0.18 9.76 0.38 1.2 0.824
x = 0.88 28 0.13 18.03 0.32 1.5 0.917
x = 0.91 14 0.07 57.60 0.23 2.2 1.268

Y2Nix
x = 7.0 52 0.033 22.7 × 105 5.172× 103 21× 104

x = 6.9 52 0.047 9.45 3.799 11.6
x = 6.8 60 0.064 7.28 2.580 8.39
x = 6.7 58 0.078 6.03 1.723 6.24

x = 15 119 0.15 9.87× 104 3.33 3.51
x = 17 140 0.27 6.79 1.54 1.98

YNi2.9 32 0.047 9.78× 105 1.706 7.91
YNi3 30 0.04 10.4 2.18 9.23

Pt1−xNix
x = 0.429 23.0 0.051 5.84× 104 4.37× 103 3.07× 104

x = 0.452 54.2 0.104 4.45 3.67 2.46
x = 0.476 74 0.143 3.74 3.12 2.08
x = 0.502 100 0.179 3.90 2.87 2.04

In this case,y always becomes finite even in the absence of an external magnetic field. We
can determine its initial condition, the value ofy = y0 (=yz) for σ = 0 (h = 0), by solving

A(y0, t) − czy0 = A(0, tc). (4.2)
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Starting fromy = y0 atσ = 0, the magnetic isotherm is obtained by numerically integrating
(4.1) at any given temperature.

The temperature dependence of the reciprocal magnetic susceptibility is determined as
the solution of (4.2). For instance aroundt = tc, with the use of the critical dependence ony

andt , equation (2.9), of the thermal amplitude, equation (4.2) is approximated by

1

3
C4/3

(
t4/3 − t

4/3
c

)
− πt

4
√
y0 = 0. (4.3)

They0-linear term due to the quantum amplitude can be neglected here compared with the
square-root term becausey0 is very small. The critical temperature dependence ofy0 is
therefore given by

y0 =
[

4

3πt
C4/3

(
t4/3 − t

4/3
c

)]2

. (4.4)

At general temperature we need to solve (4.2) numerically. It is already known that a Curie–
Weiss-like temperature dependence is derived over a wide temperature range from the equation.

4.1. Universal relation for the magnetic susceptibility

Equation (4.2) has an interesting property as will be explained below. We have already argued
that the coefficientcz will have a magnitude of order unity. If the temperature dependence
of the reciprocal magnetic susceptibility is represented in the form of thet-dependence of
y, equations for various compounds look the same independently of the material parameters
specific to them. From this scaling property we can derive the relation between the ratioσe/σs
and the critical temperatureTc.

In our present units, the Curie–Weiss law for the magnetic susceptibility is given by

(gµB)
2χ = N0µ

2
Bσ

2
e

3(T − Tc)
. (4.5)

In reduced units, it is also represented by

χ

N0
= 1

2TAy
= σ 2

e

12T0(t − tc)
. (4.6)

We can now associate the effective momentσe with the slope of thet-dependence ofy as
follows:

σ 2
e = 6T0(t − tc)

TAy
= 6

σ 2
s

20C4/3t
4/3
c

t − tc

y
� 3σ 2

s

10C4/3t
4/3
c

1

dy/dt
(4.7)

where from (3.4) we used the relation

T0

TA
= σ 2

s

20C4/3t
4/3
c

.

On the other hand, the slope of the curve dy/dt is a universal constant determined by solving
(4.2). From these results, it follows that the ratioσe/σs is determined as a function of the
single parametertc = Tc/T0, i.e.,

σ 2
e

σ 2
s

= 3

10C4/3t
4/3
c

1

dy/dt
. (4.8)
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Figure 2. Numerical results for the temperature dependence of dy/dt for tc = 0.01 (solid line),
0.05 (dashed line), and 0.1 (dot–dashed line).

We show in figure 2 the numerically calculatedt-dependence of the slope dy/dt for several
values oftc. If we employ the numerical estimate of dy/dt � 0.17, the following relation is
derived:

σ 2
e

σ 2
s

� 1.75 t−4/3
c . (4.9)

To test the abovetc-dependence, we plotted in figure 3 the observedσe/σs as a function of
tc = Tc/T0 for various compounds listed in table 4. The solid curve in the figure stands for the
above theoretical result (4.9). In order to show the validity of the explicitt

−4/3
c -dependence,

values of(σe/σs)2 are also plotted againstt−4/3
c in figure 4 for Y(Co1 − xAl x)2. On the other

hand, in the Rhodes–Wohlfarth plot (Rhodes and Wohlfarth 1963),σC/σs is plotted againstTc
(σC is defined byσC(σC + 2) = σ 2

e ). We reproduce in figure 5 the comparison between these
two types of plot (Nakabayashiet al 1992) for the same compounds as are listed in table 4.
From the figure we can clearly see the regularity when results are plotted according to our
proposal for most of the itinerant weak ferromagnets. Heisenberg magnets fall on the straight
line with the constant ratioσC/σs = 1 in the Rhodes–Wohlfarth plot, whereas in our plot they
are all located around the narrow region in the limit of our theoretical curve withσe/σs � 1
andTc/T0 � 1.

4.2. Equation of state in the paramagnetic phase

In the presence of a magnetic field, we can solve the equation by assuming the following field
dependence ofy andyz for smallσ 2-values:

y = y0 + y1σ
2 + · · ·

(4.10)
yz = y + σ

∂y

∂σ
= y0 + 3y1σ

2 + · · · .
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Figure 3. The universal relation between the ratioσe/σs andtc (=Tc/T0).

The solution has the same expansion form as the ground-state one. It is equivalent to the
free-energy expansion in powers ofM2. In the same way as for (3.7) in the ground state, let
us assume that theσ -dependence ofy is given as follows:

y = 1

TA

h

σ
= N0

2χ(T )TA
σ +

F̄ 1

8TA
σ 2 + · · · .

From comparison with (4.10), the relation̄F 1 = 8TAy1 is then obtained. After substitution of
(4.10), equation (4.1) can be expanded up to theσ 2-linear term as follows:

3T0

TA

{
3A(y0, t) + 5A′(y0, t)y1σ

2 − cz

(
3y0 + 5y1σ

2
)}

+
σ 2

4
= 9T0

TA
A(0, tc)

whereA′(y, t) is the partialy-derivative of the amplitudeA(y, t) given by

A′(y, t) = 1

t

∫ 1

0
dx x4[1/u + 1/2u2 − ψ ′(u)]. (4.11)

Comparing theσ 2-linear coefficients,y1 and thereforēF 1 are given as follows:

y1 = TA

60T0[cz − A′(y0, t)]
= y10

1 − A′(y0, t)/cz

F̄ 1(T ) = 8TAy1 = 2T 2
A

15T0[cz − A′(y0, t)]
= F̄ 1(0)

1 − A′(y0, t)/cz
(F1(0) = F10).
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Table 4. The observed moment ratioσe/σs andTc/T0. The values ofT0 are estimated from the
slope of an Arrott plot according to (3.8). The effective moments for the first four compounds are
from (a) Yasuokaet al (1978), (b) de Boeret al (1969), (c) Hioki and Masuda (1977), and (d)
Kontaniet al (1975).

Compound σs (uB) σe (µB) Tc (K) T0 (K) σe/σs Tc/T0

MnSi 0.4 2.25(a) 30 155 5.6 0.194

Ni3Al 0.077 1.3(b) 41.5 2760 16.9 0.015

Sc3In 0.045 1.3(c) 5.5 479 28.9 0.0115

ZrZn2 0.12 1.44(d) 21.3 1390 12.0 0.015
Zr0.92Ti0.08Zn2 0.233 1.33 40.0 628 5.71 0.064
Zr0.8Ti0.2Zn2 0.278 1.38 49.4 536 4.96 0.092
Zr0.9Hf0.1Zn2 0.078 1.27 10.2 1110 16.3 0.0092

Y(Co1−xAlx )2
x = 0.13 0.042 2.50 7 1920 59.5 0.0036
x = 0.14 0.094 2.24 15 1440 23.8 0.010
x = 0.15 0.138 2.15 26 1410 15.6 0.018
x = 0.16 0.130 2.14 22 1280 16.5 0.017
x = 0.17 0.095 2.13 16 1270 22.4 0.013
x = 0.18 0.063 2.08 9 984 33.0 0.0091
x = 0.19 0.040 2.04 7 1280 51.0 0.0055

FexCo1−xSi
x = 0.36 0.11 1.12 23 640 10.2 0.0359
x = 0.48 0.19 1.32 48 841 6.9 0.0571
x = 0.67 0.22 1.39 55 680 6.3 0.0809
x = 0.77 0.18 1.13 40 399 6.3 0.1002
x = 0.83 0.13 0.94 28 340 7.2 0.0824
x = 0.91 0.07 0.58 14 239 8.3 0.0586

Y2Nix
x = 7 0.033 0.631 52 5172 19.1 0.0101
x = 6.9 0.047 0.728 52 3799 15.5 0.0137
x = 6.8 0.064 0.786 60 2580 12.3 0.0233
x = 6.7 0.078 0.826 58 1723 10.6 0.0337
x = 17 0.27 0.729 149 1544 5.22 0.0965
x = 15 0.15 0.677 119 3329 8.97 0.0357
YNi2.9 0.047 0.693 32 1706 14.7 0.0188
YNi3 0.04 0.70 30 2178 17.5 0.0138

Pt1−xNix
x = 0.429 0.051 1.59 23 4370 31.2 0.0053
x = 0.452 0.104 1.59 54.2 3670 15.3 0.0148
x = 0.476 0.143 1.59 75 3120 11.1 0.0240
x = 0.502 0.179 1.59 100 2870 8.89 0.0348

Numerical results for the temperature dependences ofy andy1/y10 are shown in figure 6.
BecauseA′(y0, t) is always positive,F̄ 1 is slightly smaller than the ground-state value by 20
to 30% in the paramagnetic state except around the critical point. It is important to realize
that the fourth expansion coefficient̄F 1(T ) is also dependent on the temperature and external
field, though its dependence is weak except aroundt = tc.

As we approach the critical point, the derivativeA′(y0, t) shows the divergent behaviour
−πt/8

√
y0 aroundy0 = 0. From the(t4/3 − t

4/3
c )2-dependence ofy0 aroundt = tc in (4.4),
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Figure 4. The linear relation between(σe/σs )2 andt4/3
c for Y(Co1−xAlx )2.
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Figure 5. Comparison between two types of plot,σC/σs versusTc (the Rhodes–Wohlfarth plot)
andσe/σs versusTc/T0.

the following critical temperature dependence ofy1 is obtained:

y1 ∼ 8czy10

πtc

√
y0 = 8czy10

3πtc

4C4/3

3πtc

(
t4/3 − t

4/3
c

)
= 32czy10C4/3

3π2t2c

(
t4/3 − t

4/3
c

)
. (4.12)
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Figure 6. The t-dependence ofy andy1/y10 in the paramagnetic state fortc = 0.01 (solid line),
0.05 (dashed line), and 0.1 (dot–dashed line).

ThereforeF̄ 1 shows the same temperature dependence as that of
√
y0 and decreases towards

the critical point t = tc according to the following temperature dependence as shown
in figure 6:

F̄ 1(T )

F̄ 1(0)
= y1

y10
= 32czC4/3

3π2t
2/3
c

[(
T

Tc

)4/3

− 1

]
. (4.13)

When we compare the result with experiments, we must be aware that we are discussing the
inverse of theinitial slope of the Arrott plot (M2 versusH/M plot) in the weak-field limit.
If we estimate the slope in the presence of the field, it is likely to be underestimated. With
increasing field strength, the slope dσ 2/dy of each magnetic isotherm decreases monotonically,
andy1 approaches the valuey10. Numerical results for the equation of state throughout the
wide temperature range will be given later after we have discussed the magnetic properties for
the ordered state belowtc.

4.3. Critical magnetization process

At the critical temperaturet = tc, both componentsy andyz of the reciprocal susceptibility
are very small aroundσ = 0 because both of them just vanish forσ = 0. Each of the thermal
amplitudes is then dominated by the following square-root dependence:

A(y, tc) � A(0, tc) − πtc

4

√
y A(yz, tc) � A(0, tc) − πtc

4
√
yz.

Hence the sum rule condition (2.12) is approximated by

σ 2 = 3πTc
TA

(2
√
y +

√
yz) + O(y, yz). (4.14)
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In the right-hand side, both they- and theyz-linear terms, coming from the implicit magnetic
field dependence of the quantum amplitude, are neglected compared with the first two square-
root terms. We can easily see that (4.14) has the following solution in theσ = 0 limit:

y = ycσ
β yz = y + σ

∂y

∂σ
= (1 +β)ycσ

β. (4.15)

On substituting (4.15) into (4.14), the numerical constantyc and the exponentβ are determined
as follows:

yc =
{

TA

3πTc(2 +
√

5)

}2

=
{

20czy10

π(2 +
√

5)tc

}2

β = 4. (4.16)

We are thus led to the critical magnetization process:

y = h

TAσ
= 1

TA

2µBH

M/(N0µB)
= yc

(
M

N0µB

)4

.

In a similar form to the Arrott plot, it is also represented as follows:

(
σ

σs

)4

= 3t2/3
c

C4/3

[
π(2 +

√
5)

20

]2
y

A(0, tc)
. (4.17)

In figure 7 numerical results from (4.1) att = tc are shown for several values oftc. The
linear relation between(σ/σs)4 andy/A(0, tc) is evident from the figure. We can also see the
tc-dependence of the slope of the plots, i.e. the slopes become steeper for largertc.
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(σ
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Figure 7. The critical magnetization process fortc = 0.05 (solid line), 0.1 (dashed line), and 0.2
(dot–dashed line).

In terms of the original variablesH andM, it is expressed by

M4 = 2[3π(2 +
√

5)]2N4
0µ

6
B

T 2
c

T 3
A

H

M
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or, in a more convenient form for experimental analyses,(
M

Ms

)4

= 1.20× 106 T 2
c

T 3
Aσ

4
s

H

M
(4.18)

if H andM are measured in units of kOe and emu mol−1, respectively. The above relation
is useful in estimating the value ofTA. If the slope is determined experimentally from the
M4–H/M plot atT = Tc, TA is evaluated from the observed values ofσs andTc. In the case
of MnSi the Arrott plot of the observedM–H curve (Blochet al 1975) shows a good linearity
betweenM2 andH/M at low temperature. At the critical temperature, on the other hand, it
is rather well fitted with the relation(M/Ms)

4 = 0.234H/M (kOe g emu−1). With the use
of Tc = 30 K andσs = 0.4 from table 3, we obtainTA = 1.29× 103 K which compares
well with TA = 2.08× 103 K obtained from the neutron scattering experiments (Ishikawa
et al 1985). Such an analysis was also performed for FexCo1−xSi by Shimizuet al (1990).
The values ofTA estimated in this way are shown in the last column of table 3. They also
agree well with those estimated by using (3.8) within a factor of 2.

5. Magnetic equation of state in the ordered state

According to the Stoner–Wohlfarth theory (Stoner 1936, Wohlfarth 1968, Edwards and
Wohlfarth 1968), the temperature and field dependence of the magnetizationM(H, T ) obeys
the following equation:

M2(H, T ) = M2(0,0)
[
1 − (T /Tc)

2
]

+
2χz0H

M(H, T )
(5.1)

whereχz0 is the longitudinal (differential) magnetic susceptibility. The sameT 2-dependence
of M2(0, T ) has been predicted by the SCR theory at low temperature, based on the spin
fluctuation mechanism. In the latter, however,M2(0, T ) follows a(T 4/3

c −T 4/3)-dependence at
higher temperature aroundTc. Although there have been lots of experiments on the temperature
and field dependence of the magnetization in the ordered state, neither comprehensive nor
quantitative analyses of them have yet been performed from the latter point of view. This is
the purpose of this section.

According to our view, the magnetic properties of the system in its ordered state are
treated on the basis of the following sum rule:

3T0

TA
[2At(y, t) + A(yz, t) − cz(2y + yz)] +

σ 2

4
= 9T0

TA
A(0, tc) (5.2)

whereAt(y, t) is the transverse thermal amplitude in the presence of the spontaneous magnetic
moment. With the use of the parametery10 defined by (3.3), it is also given by

2At(y, t) + A(yz, t) − cz(2y + yz) + 5czy10σ
2 = 3czy10σ

2
s (5.3)

where

yz = y + σ
∂y

∂σ
.

To solve the above differential equation, we need an initial condition, the value ofy at some
startingσ -value. In the case of the paramagnetic state, we can determine the condition with
the use of the same differential equation. In contrast, it is not so easy to find it from (5.3) in
the ordered state for the following reason. From the continuity of solutions, it is reasonable to
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assume that the solutiony of (5.3) should have the sameσ 2-dependence as that of the ground
state:

y = y1

[
σ 2 − σ 2

0

]
+ · · ·

(5.4)
yz = y1

[
3σ 2 − σ 2

0

]
+ · · · = 3y1

[
σ 2 − σ 2

0

]
+ 2y1σ

2
0 + · · · = 3y + yz0 + · · ·

whereyz0 is the reduced longitudinal reciprocal susceptibility in the absence of the external
field. The above form of the solutiony is equivalent to the free-energy expansion in powers
of M2. It includes two independent parameters,σ0 andy1. The parameterσ0 has the meaning
of the spontaneous moment per magnetic atom at general temperature belowtc. On the other
hand,y1 is proportional to the fourth-order expansion coefficientF1 of the free energy. Even if
we puty = 0 in (5.3), for instance, we are left with only a single condition for two independent
parametersσ0 andy1. It seems that we require another condition to determine them. The key
to resolving this difficulty is to realize that the solution (5.4) imposes a strict restriction on the
form of the differential equation. Equation (5.3) has to be compatible with the above solution.

For the longitudinal amplitude, there is no difficulty becauseyz is always finite belowtc.
It is a well-behaved function ofyz. The transverse mode is, on the other hand, influenced by
the appearance of the spin-wave mode. At the outset, it is therefore necessary to examine its
effect on the dependence ony andt of the amplitudeAt(y, t).

5.1. The effect of the presence of the spin wave

Due to the presence of the spin-wave mode, the transverse thermal amplitude consists of a
sum of contributions:

At(y, t) = Asw(t) + Ac(y, t).

The spin-wave contribution, denoted byAsw(t), comes from the spin-wave modes arising
from the well-defined spin-wave poleωq of the transverse dynamical susceptibility at low
temperature around the origin of the wave-vector space:

Imχ(q, ω) ∝ σδ(ω − ωq).

The other one is given by the wave-vector integral over spin fluctuation modes with the finite
damping�q outside the spin-wave region, like the expressionA(y, t) in (2.7). It is explicitly
given by

Ac(y, t) =
∫ 1

xc

dx x3 [lnu − 1/2u− ψ(u)] u = x(y + x2)/t (5.5)

where the reduced cut-off wave vectorxc represents the boundary of the spin-wave region.
Although the spin-wave modes are confined within a restricted region around the origin of

the wave-vector space, they have a significant effect on the analytic property of the transverse
thermal amplitude, as will be shown below. If we do not take the effect into account,
for instance, the

√
y-dependence of (2.8) becomes dominant aroundy = 0, and (5.3) is

approximated by

− πt

4
(2

√
y +

√
yz) + 5czy10σ

2 = 5czy10s
2(t) (5.6)

where

s2(t) = 3

5czy10
[A(0, tc) − A(0, t)].

According to the same argument as before, it is easy to see that (5.6) has a solution
y ∝ [σ 2 − s2(t)]3. Bothy andyz then vanish forh = 0 and the spontaneous momentσ0 is
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simply given bys(t), in disagreement with the valueσs in the t = 0 limit (σ 2
s = 5s2(0)/3).

The magnetizationprocess in the weak-field limit also shows the following spurious behaviour:

σ 2 − s2(t) ∝ (h/σ)1/3

which reflects the singular non-analytic
√
y-dependence of the thermal amplitude. From this

example, it is clear that the naive replacement ofAt(y, t) with the paramagnetic formA(y, t)
is not compatible with the solution (5.4). This strongly suggests the necessity of examining
the effect of the spin-wave mode on the analytic behaviour of the transverse amplitude as a
function ofy.

5.1.1. The y-dependence of the transverse thermal amplitude. In the present treatment we
assume that the explicity-dependence of the thermal amplitude comes from that ofAc(y, t).
Its y-dependence aroundy = 0 is evaluated as follows. It mainly originates from the integral
around the origin, where the integrand is well approximated byx3/2u. It is therefore given as
follows:

Ac(y, t) − Ac(0, t) �
∫ 1

xc

dx x3
(

1

2u
− 1

2uc

)
= t

2

∫ 1

xc

dx

(
x2

y + x2 − 1

)

= t
√
y

2

(
tan−1 √

y − tan−1
√
y

xc

)

= − t
√
y

2
tan−1

(√
y(1 − xc)

y + xc

)
�
{−ty/(2xc) for y < xc

−πt
√
y/4 for xc < y

(5.7)

whereuc = x3/t. If we assumexc = 0 from the beginning, the
√
y-behaviour recovers around

y = 0. For finitexc, it becomes proportional toy and is expanded in powers ofy around the
origin. By expanding the amplitude iny around the originy = 0, we obtain the same form of
equation as that for the ground state. We can therefore find its solution by assuming (5.4). In
view of this meaning, the introduction of the lower bound of the integral is quite important.

Phenomenologically, let us introduce the following form of the cut-off wave vectorxc:

xc = 4

πξ

√
yz0 = 4

πξ

√
2y1σ

2
0 . (5.8)

It is linearly proportional toσ0 at low temperature, while it decreases in proportional toσ 2
0

around the critical point as will be clarified below. This is equivalent to an assumption that
the transverse thermal amplitude is suppressed almost as much as the longitudinal one by
the appearance of the static uniform moment. They- andyz-derivatives of0Ac(y, t) and
0A(yz, t) are then given by

∂0Ac(y, t)

∂y
� − ξπt

8
√
yz0

∂0A(yz, t)

∂yz
� − πt

8
√
yz

(for y, yz � 0).

At present, we simply assume that the numerical factorξ is slightly larger than 1, since the
transverse amplitude is more susceptible to the external field than the longitudinal one.

5.1.2. The temperature dependence of the thermal amplitude. Let us next examine the
temperature dependence of the transverse thermal amplitudeAt(y, t). At low temperature,
because of the presence of the finite lower boundxc,Ac(y, t) shows the followingt2-
dependence:

Ac(0, t) =
∫ 1

xc

dx x3[ln u − 1/2u− ψ(u)] ∼
∫ 1

xc

dx
x3

12u2 =
∫ 1

xc

dx
t2

12x3 = t2

24x2
c

(5.9)
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on using the asymptotic expansion of the digamma functionψ(u):

ln u − 1/2u − ψ(u) ∼ 1

12u2 + · · · (u � 1). (5.10)

If we let xc = 0, the criticalt4/3-dependence of (2.7) is recovered fory = 0. The presence
of the lower bound is therefore important in deriving thet2-dependence of various magnetic
properties at low temperature.

To evaluate the spin-wave amplitudeAsw(t), we simply assume that its spectrum is always
approximated by the delta functionσδ(ω − ωq). What we need is the frequency-integrated
value. In our present treatment, the effect of the lifetime broadening at finite temperature on
the integrated intensity is assumed to be small. Its temperature dependence is then given by
the following form of the wave-vector integral:

Asw(t) = σTA

2T0

∫ xc

0

x2

e(h+TAσx2)/T − 1
dx

h̄ωq = h + Dq2
Bx

2 = h + TAσx
2
(
Dq2

B = TAσ
)

whereD represents the spin-wave stiffness constant. We determined the constantD and the
pre-factorTAσ/2T0 before the integral, so the integrand coincides with the long-wavelength
limit of the integrands ofAc(y, t) andAc(0, t). At low temperature it shows the well-known
T 3/2-dependence:

Asw(t) ∼ σTA

2T0

(
T

σTA

)3/2 ∫ ∞

0

s2

es2 − 1
ds =

√
πζ(3/2)

8

σTA

T0

(
T

σTA

)3/2

(5.11)

whenσTAx2
c /T > 1 is satisfied. If we assume thatxc ∼ √

yz0 andσ ∼ σs , which is justified
at low temperature, the condition can be expressed as

t

tc
<

σsTA

Tc
x2
c = 2y10σ

2
s

σsTA

Tc
= 2C4/3

3cz

TA

T0
σst

1/3
c

where we have replacedy10σ
2
s with [C4/3t

4/3
c ]/3cz by using (3.3) and (3.4). For most weak

itinerant ferromagnets the ratioTA/T0 has a magnitude of about 10 (see tables 2 and 3, for
instance). The above inequality is therefore equivalent tot/tc < 10σst

1/3
c . The spin-wave

T 3/2-dependence is therefore observed at low temperature for those magnets with smallσs -
andtc-values.

5.1.3. Initial conditions of the equation. On the basis of the foregoing discussions on the
transverse thermal amplitude, let us rewrite the condition (5.2) in the form

s2(t) = σ 2 +
1

5czy10

[
20Ac(y, t) + 0A(yz, t) − cz(2y + yz)

]− 2

5czy10
[A(0, t) − At(0, t)]

(5.12)

where

0Ac(y, t) = Ac(y, t) − Ac(0, t) 0A(y, t) = A(y, t) − A(0, t).

By expanding (5.12) iny and equating each of its zeroth- and first-order coefficients, the
following coupled simultaneous equations for parametersσ 2

0 andy1 are obtained:(
1 − 2

5

y1

y10

)
σ 2

0 +
1

5czy10
{0A(yz0, t) − 2[A(0, t) − At(0, t)]} = s2(t)

(5.13)

y1

[
1 − 2

5cz
0A′

c(0, t) − 3

5cz
0A′(yz0, t)

]
= y10
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whereA′(y, t) is the first derivative ofA(y, t) defined by (4.11) andA′
c(y, t) is given by

A′
c(y, t) = 1

t

∫ 1

xc

dx x4[1/u + 1/2u2 − ψ ′(u)].

The initial condition of (5.2) can be uniquely determined by solving (5.13) for two independent
parametersσ 2

0 andy1. It follows that the value ofy1 also shows some temperature dependence.
The temperature dependences of both of these parameters are closely related to each other.
We show in figure 8 a typical temperature dependence ofσ 2

0 /σ
2
s andy1/y10 for tc = 0.05.

Before we show numerical results for the magnetic equation of state at general temperature
below tc, let us next examine limiting behaviours of solutions, i.e. those around the critical
region and in the low-temperature region.

0.0 0.5 1.0
T/Tc

0.0

0.5

1.0

σ2
/σs

2

y1 /y10

Tc=0.05, σs=0.1

Figure 8. The temperature dependence ofσ2
0 /σ

2
s (solid line) andy1/y10 (dashed line) belowtc

for tc = 0.05 andσs = 0.1.

5.2. Around the critical temperature

Because of our definition of the spin-wave amplitude, thet-dependence of the transverse
thermal amplitude has the following property of continuity as we approach the critical
temperature:

At(0, t) = Asw(t) + Ac(0, t) → A(0, tc) (for t → tc).

For small values ofy andyz, the thermal amplitudes and their derivatives are approximated
as follows:

0A(yz, t) ∼ −π

4
t
√
yz 0A′(yz, t) ∼ −π

8

t√
yz

0A′
c(0, t) ∼ −ξπ

8

t√
yz

.
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By substituting these results into (5.13), we obtain the following simultaneous equations:(
1 − 2

5

y1

y10

)
σ 2

0 − πt

20czy10

√
yz0 = s2(t)

(5.14)

y1

(
1 +

ξπt

20cz
√
yz0

+
3πt

40cz

1√
yz0

)
= y10.

If we recall the definitionyz0 = 2y1σ
2
0 , we can easily find a solution fory1 of the form

y1 = y ′
cσ

2
0 from the second line. The coefficienty ′

c is determined by

y ′
c =

[
40

√
2czy10

πtc(2ξ + 3)

]2

=
[

2
√

2TA
3πTc(2ξ + 3)

]2

. (5.15)

The same expression foryz0 = 2y ′
cσ

4
0 is already obtained just at the critical point, i.e.

yz = 5ycσ 4 in (4.15), ifσ0 is taken as the field-induced momentσ . In the critical limit, let us
assume thatyz should have the same dependence on the momentσ irrespective of whether it is
induced by the external field or appears spontaneously. We can then determine the numerical
factorξ of xc defined in (5.8). On equatingyc in (4.16) with 2y ′

c/5, ξ is determined by the
following condition:

(
20

2 +
√

5

)2

= 2

5

(
40

√
2

2ξ + 3

)2

which leads toξc being given by

ξc = 5 + 8
√

5

10
= 2.288. . ..

On substituting in the result, the first line of (5.14) is given by

σ 2
0

(
1 − πtc

√
2y ′

c

20czy10

)
= σ 2

0

(
1 − 4

2ξ + 3

)
= s2(t). (5.16)

With the use of (2.7) for the critical thermal amplitude, the temperature dependence ofs2(t)

on the right-hand side is explicitly given by

s2(t) = 12T0

TA
C4/3

(
t
4/3
c − t4/3

)
= 3

5
σ 2
s

[
1 − (T /Tc)

4/3
]
. (5.17)

The temperature dependence ofσ 2
0 is therefore finally given by(

σ0(t)

σs

)2

� 3(2ξ + 3)

5(2ξ − 1)

[
1 − (T /Tc)

4/3
]

= ac

[
1 − (T /Tc)

4/3
]

(5.18)

where

ac = 3(2ξ + 3)

5(2ξ − 1)
.

The numerical factorac is given by 1.27 forξ = ξc. We show in table 5 the dependence of
ac on our various choices ofξ -value. The value ofac is easily estimated experimentally as
the extrapolation of the observed linear relation betweenσ 2

0 andT 4/3 to theT = 0 limit. The
values ofac obtained in this way are slightly larger than 1 by 10 to 20% (Sasakuraet al 1984,
Shimizuet al 1990), in agreement with our estimate forξ = ξc.
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Table 5. The dependence on the numerical factorξ .

ξ ac aF a0 aT

1.0 3 12 14.1 37.3
1.5 1.8 5 25.7 64.3
2.0 1.4 2.857 56.9 112
ξc 1.27 2.21 89.6 153
2.5 1.2 1.875 122.7 191

According to the result given above,y1 becomes proportional toσ 2
0 aroundt = tc. Hence

the fourth-order expansion coefficientF̄1 shows the same temperature dependence asσ 2
0 and

is given by

F1

F̄10
= 8TAy1

15czT0

2T 2
A

= y1

y10
= y ′

cσ
2
s

y10

(
σ0

σs

)2

= 640czC4/3

(2ξ − 1)(2ξ + 3)π2t
2/3
c

[
1 − (T /Tc)

4/3
]

= 32aFczC4/3

3π2t
2/3
c

[
1 − (T /Tc)

4/3
]

aF = 60

(2ξ − 1)(2ξ + 3)
. (5.19)

The same temperature dependence ofF̄ 1 is now derived as in the paramagnetic solution,
i.e. (4.13), except for the numerical factoraF (aF = 1 for the paramagnetic case). These
results forσ 2

0 and F̄ 1 prove the validity of our treatment of the ordered state as well as
our expression for the cut-off vectorxc of (5.8). Thet-dependence of̄F 1 is also consistent
with our critical solution, (4.18), i.e. the absence ofF̄ 1 at t = tc. In previous studies, the
temperature dependence ofF̄ 1 has not been seen as important. It would be quite interesting
if the abovet-dependence for̄F 1 was confirmed experimentally. As an illustration, we
show in figure 9 numerical results for the temperature dependences of(σ/σs)

2 andy1/y10

0.0 0.5 1.0
(T/ c )

 4/3

0.0

0.5

1.0

1.5

(σ
/σ

s)
2 , y

1/
y 10

t c = 0.05
t c = 0.20

T

Figure 9. The t4/3-dependence ofσ2 (thick and thin lines fortc = 0.05 and 0.2) andy1/y10
(dashed line fortc = 0.05).
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as functions of(t/tc)4/3. We can see from the figure that the linearity of the curve looks
better for cases with smallertc. The calculated qualitative tendency is in accordance with
the observed temperature dependence for Ni3Al (Sasakuraet al 1984) and (FeCo)Si (Shimizu
et al 1990). It also looks as if the calculated slope of the curve depends slightly ontc.
According to our result (5.18), however, the slopeac is a universal constant, independent of
tc. This means that the real critical(T 4/3

c − T 4/3)-dependence ofσ 2
0 is supported only in the

very narrow region aroundtc whentc becomes smaller. The apparent overall good linearity
of such a plot for compounds with smalltc is therefore not the result of critical behaviour and
has a different cause.

5.3. Low-temperature behaviour

5.3.1. Temperature dependence of the spontaneous moment. At low temperature, from (5.9)
the transverse thermal amplitude and its derivative show the followingt2-dependence:

At(0, t) = Asw(t) +
t2

24x2
c (5.20)

0A′
c(0, t) = − t2

24x4
c

= − t2

24

(
πξ

4

)4 1

4y2
1σ

4
0

.

The longitudinal component and its derivative also show the samet2-dependence:

A(yz, t) = t2

24yz
+ · · · A′(yz, t) = − t2

24y2
z

. (5.21)

On substituting these expressions into the second line of (5.13),y1 is given by

y1/y10 = 1 +
1

5cz
[20A′

c(0, t) + 30A(yz0, t)] + · · ·

= 1 − t2

480cz
(
y10σ 2

s

)2
[

2

(
πξ

4

)4

+ 3

]
+ · · ·

= 1 − a0t
2
c(

60czy10σ 2
s

)2
(
T

Tc

)2

+ · · · = 1 − a0

[20C4/3]2t
2/3
c

(
T

Tc

)2

+ · · ·

= 1 − a0

σ 4
s

(
T

TA

)2

+ · · · = 1 − b0T
2 + · · · (5.22)

where

a0 = 15cz
2

[
2

(
πξ

4

)4

+ 3

]

where we have usedczy10 = TA/60T0 = C4/3t
4/3
c /3σ 2

s from (3.4) andyz0 = 2y1σ
2
0 �

2y10σ
2
s . If we assumecz = 1/2 andξ = ξc for instance, we obtaina0 = 89.6. The fourth

expansion coefficienty1 therefore decreases from its ground-state valuey10 according to the
t2-dependence at low temperature. In spite of numerous experiments on the temperature
dependence of the spontaneous moment, only a few analyses are available in the literature
for the t-dependence ofF1. For example, Wohlfarth and de Chatel (1970) estimated the
coefficientb0 from the observed isotherms for ZrZn1.9(Knappet al 1971) and Zr0.92Ti0.08Zn2
(Ogawa 1968).t2-dependence ofF1 was also reported for Pt1 − xNix (Beille et al 1974). The
coefficientsb0evaluated from linear fits to the observed results are shown in table 6. For ZrZn1.9



Quantum SF theory of the magnetic EOS of weak itinerant-electron FM 6349

Table 6. Experimentally estimated slopes of thet2-dependences ofy1/y10 for ZrZn1.9, (ZrTi)Zn2,

and Pt1−xNix alloy. The values ofT †
A

are reproduced from the sixth column of table 3 for
comparison.

Compound b0 (K−2) σs (µB ) tc TA (K) T
†
A (K)

ZrZn1.9 7.4 × 10−4 0.16 0.023 1.4 × 104 5.85× 103

Zr0.92Ti0.08Zn2 1.13× 10−4 0.233 0.064 1.6 × 104 5.92× 103

Pt1−xNix
x = 0.429 3.1 × 10−5 0.051 0.0053 4.5 × 105 3.07× 104

x = 0.452 2.9 0.104 0.015 1.3 × 105 2.46× 104

x = 0.476 2.3 0.143 0.024 7.7 × 104 2.08× 104

x = 0.502 1.6 0.179 0.035 5.8 × 104 2.04× 104

and Pt1 − xNix for x = 0.476 and 0.502, the values ofTA estimated by using (5.22) compare
relatively well with those shown in table 3 (denoted byT

†
A) obtained from theT -dependence

of the slope of the Arrott plot. For the lower Ni concentrations for Pt1 − xNix with smallertc,
the agreement is rather poor. According to the conventional non-linear mode–mode coupling
mechanism of the SCR theory, thet2-dependence ofF1 will arise from the renormalization
effect of the sixth-order non-linear mode–mode coupling among spin fluctuation modes. The
observed good linearity of the Arrott plot, however, suggests the absence of higher-order
non-linear terms. It will therefore be difficult to explain the abovet2-dependence on the basis
of such a mechanism. The analysis for Zr0.92Ti0.08Zn2 by Wohlfarth and de Chatel (1970)
also indicates the presence of higher-order terms in the series of theT 2-expansion because of
the deviation from thet2-dependence at higher temperature. This is also in accordance with
our preceding conclusion thaty1 will deviate from thet2-dependence and finally follow the
(t

4/3
c − t4/3)-dependence around the critical point.

In order to obtain the temperature dependence ofσ 2
0 , let us next rewrite the first line of

(5.13) in the form

3czy10

(
σ 2

0 − σ 2
s

)
= −2At (0, t) − A

(
2y1σ

2
0 , t
)

+ 2cz (y1 − y10) σ
2
0 .

It is also represented by

σ 2
0

[
1 − 2

3

(
y1

y10
− 1

)]
= σ 2

s − 1

3czy10

[
2At(0, t) + A

(
2y1σ

2
0 , t
)]

. (5.23)

With the use of thet2-dependence of the thermal amplitudes, equations (5.20) and (5.21), and
on substituting the expression (5.22) fory1/y10, we get the following result:

σ 2
0

σ 2
s

=
{

1 − 1

3czy10σ 2
s

[
2At(0, t) + A

(
2y1σ

2
0 , t
)]}[

1 − 2

3

(
y

y10
− 1

)]−1

= 1 − 1

3czy10σ 2
s

{
2Asw(t) +

t2

120y10σ 2
s

[
4 + 5(πξ/4)2 + (πξ/4)4

]
+ · · ·

}

= 1 − t2

360czy2
10σ

4
s

[
4 + 5(πξ/4)2 + (πξ/4)4

]
− 2

3czy10σ 2
s

Asw(t) + · · ·

= 1 − aT

σ 4
s

(
T

TA

)2

− 2

3czy10σ 2
s

Asw(t) (5.24)
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where

aT = 10cz[4 + 5(πξ/4)2 + (πξ/4)4].

It is also represented by

σ 2
0

σ 2
s

= 1 − aT

400C2
4/3t

2/3
c

(
T

Tc

)2

− 2

C4/3t
4/3
c

Asw(t) + · · · .

The spontaneous moment includes two kinds of contribution at low temperature, the
spin-wavet3/2-dependence and thet2-dependence from the spin fluctuations. Their relative
importance depends on the temperature range of interest. Thet3/2-dependence, for instance,
becomes dominant when the following inequality:

aT

σ 2
s

(
T

TA

)2

<
2

3czy10
Asw(t) (5.25)

is satisfied. With the use of the expression forAsw(t) in (5.11), equation (5.25) can be
expressed as follows:

t

tc
< 5C4/3

{
10

√
πζ(3/2)

aT

}2

σst
1/3
c � 0.461σst

1/3
c (5.26)

where we have assumedξ = ξc. Since bothσs andtc are very small for weak itinerant-electron
ferromagnets, the spin-wave contribution becomes dominant only at very low temperature.
This explains why thet3/2-dependence of the spontaneous moment is not observed for most
of the itinerant weak ferromagnets.

As long as the spin-wave contribution is neglected, the temperature dependence ofσ 2
0 is

simply given by

σ 2
0

σ 2
s

= 1 − aT

σ 4
s

(
T

TA

)2

+ · · · = 1 − bT T
2 + · · · . (5.27)

The T 2-coefficients have been estimated for several weak itinerant-electron ferromagnets
experimentally. They are summarized in table 7. From the observed values ofbT andσs , we
can estimate the parameterTA by using

TA = 1

σ 2
s

√
aT

bT
. (5.28)

In the same table, table 7, values ofTA estimated frombT are also shown in comparison with
those reproduced from table 3 obtained from the slope of the Arrott plot of the magnetization
measurements. The general agreements are satisfactory.

We have to be very careful in evaluatingbT from the observed slope of theσ 2 versus
T 2 plot, for it depends on the temperature range used for the fit. As will be shown below,
the t2-dependence ofσ 2

0 is sometimes confined within the very-low-temperature region. As
we increase the temperature,σ 2

0 will soon deviate from thet2-dependence and the critical

[t4/3
c − t4/3]-behaviour follows. The crossover temperature is estimated as follows. Thet2-

dependence originates from the asymptotic expansion of the digamma functionψ(u), equation
(5.10), permissible foru � 1. This is satisfied whenx3

c /t � 1 for the transverse amplitude.
The same inequality also holds for the longitudinal amplitude. With the use ofxc ∼ √

yz0,
the condition can be represented by

t �
(
2y10σ

2
s

)3/2 =
[

2C4/3

3cz

]3/2

t2c .
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Table 7. The spin fluctuation parameterTA estimated from theT 2-coefficient of the magnetization.

The values ofT †
A

are reproduced from table 3 for comparison.

Compound σs bT (K−2) TA (K) T
†
A (K) References

Ni74.7Al25.3 0.0474 2.77× 10−3 1.05× 105 3.85× 104 Sasakuraet al (1984)

Ni75Al25 0.0770 0.874× 10−3 7.06× 104 Sasakuraet al (1984)

Ni75.2Al24.8 0.0917 0.589× 10−3 6.06× 104 Sasakuraet al (1984)

Ni75.5Al24.5 0.110 0.386× 10−3 5.20× 104 Sasakuraet al (1984)

Ni3Al 0.075 0.784× 10−3 7.9 × 104 3.09× 104 de Boeret al (1969)

Ni75.5Al24.5 0.104 0.372× 10−3 5.9 × 104 de Boeret al (1969)

Ni76Al24 0.125 0.246× 10−3 5.0 × 104 de Boeret al (1969)

ZrZn2 0.12 2.69× 10−3 1.66× 104 7.40× 103 Ogawa (1972)

Fe0.67Co0.33Si 0.22 0.400× 10−3 1.28× 104 9.9 × 103 Shimizuet al (1990)

Fe0.77Co0.23Si 0.18 0.833× 10−3 1.32× 104 1.2 × 104 Shimizuet al (1990)

Fe0.83Co0.17Si 0.13 1.49× 10−3 1.90× 104 1.5 × 104 Shimizuet al (1990)

Fe0.91Co0.09Si 0.07 5.13× 10−3 3.52× 104 2.2 × 104 Shimizuet al (1990)

Pt0.53Ni0.47 0.121 1.30× 10−4 7.4 × 104 Beille et al (1975)

Y2Ni15 0.15 8.54× 10−5 5.95× 104 3.51× 104 Gignouxet al (1980a)

YNi3 0.04 1.20× 10−3 2.2 × 105 9.23× 104 Gignouxet al (1980b)

Or it is simply given byt/tc � 1.5 tc. To illustrate the situation, we show in figure 10 numerical
results forσ 2

0 /σ
2
s as a function of(t/tc)2 = T 2/T 2

c . In the same figure,t2-linear behaviour
in (5.25) is also shown by dashed lines for reference. We can see that the slope of the real

0.0 0.2 0.4
T

 2
/Tc

2

0.0

0.5

1.0

σ2 /σ
s2

tc = 0.05
tc = 0.20

Figure 10. The t2-dependence ofσ2 (solid thin and thick lines fortc = 0.05 and 0.2). Dashed
lines representt2-linear dependence at low temperature. The discrepancy between the solid and
dashed lines at low temperature comes from the spin-wave contribution.
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t2-dependence becomes very steep and is limited to within the very-low-temperature region
for cases with smallertc in accordance with the above criterion. Reliable estimation ofbT from
experiments therefore becomes very difficult for magnets with smalltc-values. If the observed
results are globally fitted with at2-relation, only a moderate slope is obtained andbT is likely to
be underestimated. The same argument is applicable to thet-dependence ofy1. This explains
the discrepancy between the spin fluctuation parametersTA estimated from the slope of the
t2-dependence ofy1 and those obtained from another measurements (see table 6) for smalltc.

5.3.2. Field dependence at low temperature. By extending our preceding arguments, the
magnetic field dependence of the moment at low temperature can be also evaluated. If we
substitute (5.4) into (5.3), our basic equation (5.3) can be expressed in the form[

1 − 2

3

(
y1

y10
− 1

)]
σ 2 = σ 2

s − 1

3czy10
[2At(y, t) + A(yz, t)] +

y

y10
.

The temperature and field dependence ofσ 2 is then given by

σ 2 =
[
1 − 2

3

(
y1

y10
− 1

)]−1{
σ 2
s +

y

y10
− 1

3czy10
[2At(y, t) + A(yz, t)]

}
. (5.29)

Due to the presence of the external magnetic field,y becomes finite and the low-temperature
expansion (5.9) of the transverse thermal amplitude is slightly modified as follows:

At(y, t) � Ac(y, t) �
∫ 1

xc

dx
x3

12u2 = t2

24

1 − x2
c

1 + y

1

y + x2
c

� t2

24

1

y + x2
c

.

The longitudinal componentA(yz, t) has already been given by (5.21). By using these
expressions for the thermal amplitudes, the temperature and field dependence of the moment
is finally given by

σ 2 =
(
σ 2
s + y/y10

)[
1 − t2

36czy2
z0

{
1

5

(
2
y2
z0

x4
c

+ 3

)

+
1

1 + 2y/yz0

(
2yz0/x2

c

1 +y/x2
c

+
1

1 + 3y/yz0

)}
+ · · ·

]

=
(
σ 2
s + y/y10

)[
1 − aT (H)

σ 4
s

(
T

TA

)2

+ · · ·
]

where

aT (H) = 5cz

[
2
y2
z0

x4
c

+ 3 +
5

1 + 2y/yz0

(
2yz0/x2

c

1 + y/x2
c

+
1

1 + 3y/yz0

)]
. (5.30)

The spin-wave contributionAsw(t) is neglected here for simplicity. In the above derivation,
we have used again the relationczy10 = TA/60T0 andyz0 � 2y10σ

2
s . In the weak-field limit,

aT (H) shows the followingH -linear dependence:

aT (H) = aT − 25cz

[
5 + 4

yz0

x2
c

+ 2
y2
z0

x4
c

]
y

yz0
+ · · · (y � 2µBH/σsTA).

At low temperature thet-dependence ofy on the right-hand side of (5.30) is neglected, as far
as thet2-dependence is concerned. The field dependence ofy is therefore evaluated simply
by solving the equation of state in the ground state. In the presence of the external fieldH ,
the induced moment ¯σ = σ/σs in the ground state is determined as the solution of

σ̄ (σ̄ 2 − 1) = yσ

y10σ 3
s

= 120czT0

σ 3
s T

2
A

µBH. (5.31)
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The field dependence ofy is then given by

y/yz0 = (σ̄ 2 − 1)/2. (5.32)

By solvingσ̄ as a function ofH and putting the corresponding value ofy/yz0 into (5.30), we
can evaluate the field dependence ofaT (H).

For Pt0.53Ni0.47the field dependence ofaT (H)was measured forH up to 100 kOe (Beille
1975). The observed relative suppression ofaT (H)/aT (0) is reproduced in figure 11. In
the same figure our numerical result from (5.30) is shown for comparison. We assumed
TA = 2 × 104 K, T0 = 3 × 103 K from table 3, andσs = 0.12. The agreement between the
theory and experiments is very good.

0 50 100
H (kOe)

0.0

0.5

1.0

a T
(H

)/
a T

(0
)

Figure 11. The magnetic field dependence of theT 2-coefficient of the magnetization. Solid circles
represent the observed results for Pt0.53Ni0.47.

5.4. Magnetic isotherms at general temperature

Once the spontaneous momentσ 2
0 is determined by solving (5.13), we can obtain the magnetic

isotherm by numerically integrating the first-order differential equation starting from the initial
conditiony = 0 atσ = σ0 at any given temperaturet . It is easy to see that the scaling property
also holds for solutions thus obtained. In place ofσ0 andy, let us define reduced parameters,
σ̄ andȳ, by

σ0 = σsσ̄ y =
(
y10σ

2
s

)
ȳ = A(0, tc)

cz
ȳ = C4/3t

4/3
c

3cz
ȳ

yz =
(
y10σ

2
s

)
ȳz.

Then (5.3) can be represented by

2Āt (y, t) + Ā(yz, t) − (2ȳ + ȳz) + 5σ̄ 2 = 3 (5.33)

whereĀ(y, t) = A(y, t)/A(0, tc) and t is given bytc(T /Tc). The lower bound ofxc for
At(y, t) is also determined by the parameteryz = (y10σ

2
s )ȳz obtained by solving (5.33) for

ȳ = 0. The differential equation (5.33) for ¯y as a function of ¯σ at each reduced temperature
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0.0 0.5 1.0 1.5 2.0
y/A(0,tc)
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σ2 /σ
s2
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y/A(0,tc)
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σ2 /σ
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Figure 12. Arrott plots of calculated magnetic isotherms fortc = 0.05 (a) and 0.2 (b). The curves,
from the top, correspond toT /Tc = 0, 0.5, 0.9, 1, 1.1, 1.5, and 2, respectively.

T/Tc now depends only on a single parametertc. The behaviour of the solutions is therefore
determined by the magnitude oftc. This means that the temperature and the field dependences
of σ for any weak ferromagnets look the same if they have the sametc, andσ , T , andH are
properly scaled. The result is consistent with our preceding results for the temperature and
the field dependences ofσ 2

0 andy1, as well as our discussion on their ranges of validity. In the
last figure, figure 12, the Arrott plots of numerically calculated magnetic isotherms are shown
for tc = 0.05 and 0.2 in reduced units.
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6. Discussion

In this paper, we have discussed a lot of quantitative magnetic properties of weak itinerant
ferromagnets on the basis of the spin fluctuation mechanism. We have studied both their
temperature and magnetic field dependences throughout a wide temperature range by dealing
with the magnetic equation of state. It seems to be widely accepted that the Arrott plot of
magnetic isotherms shows good linearity with nearly the same slopes throughout the wide
temperature and external field range for weak itinerant-electron magnets. They are sometimes
globally fitted well with the simple Stoner–Wohlfarth formula (5.1). If we inspect the observed
behaviours in more detail, we will however find slight deviations. For instance, the presence
of theT 2-dependence on temperature of the fourth expansion coefficientF1 was recognized
almost 30 years ago (Wohlfarth and de Chatel 1970). Since then it has not been seen as
very important either theoretically or experimentally. That is because the discrepancies are
sometimes very small and not very clearly evident. Their ranges of deviations are also very
limited. We have clarified in the present paper that the actual magnetic isotherms for weak
ferromagnets are not so simple and do show a variety of behaviours. The slight deviations have
their own meaning and we can draw valuable information from them on the spin fluctuation
spectra.

The underlying motif of this study is the emphasis on the predominance of the roles of
collective magnetic excitations over those of the single-particle ones in the magnetic properties
of itinerant-electron magnets. This is true even in the low-temperature region including the
ground state with no thermal spin fluctuation amplitude. Our approach is based on a very
simple assumption on the conservation of the local spin amplitude and the requirements from
the rotational symmetry of the system. In the Stoner–Wohlfarth theory most of the magnetic
properties were explained as associated with single-particle excitations of the system, while
the collective magnetic excitations are neglected. As an approach to extending the Stoner–
Wohlfarth picture, the SCR theory tried to include the small-amplitude fluctuations around the
mean-field free energy. It is thereforeappropriatewhen the amplitude of the fluctuations is very
small. Although the roles of thermal spin fluctuations are emphasized at finite temperature,
this is still based on the single-particle picture in the ground state. The non-linear mode–mode
coupling constants are therefore assumed to be given by the form of the density-of-states curve
around the Fermi energy.

We start from the opposite limit. From our point of view, weak itinerant magnets are
rather well characterized by the dominant spin fluctuation amplitudes. This is particularly
due to the presence of the quantum component of fluctuations. The appearance of small
uniform static moments does not indicate small fluctuation amplitudes. It results from the
presence of dominant fluctuation amplitudes. Because of the total-amplitude conservation,
the increase of spin fluctuation amplitudes leads to a reduction of the magnitude of the ordered
moments. Collective Bose-like excitations therefore always play major roles in almost all
aspects. In this respect the situation looks quite similar to the case of Heisenberg magnets.
Then, what kinds of property will distinguish itinerant-electron systems from Heisenberg
magnets? According to the SCR theory, for instance, the amplitude of the spin fluctuations
increases with temperature in strong contrast with the case for Heisenberg magnets. A lot of
magnetic properties of itinerant weak ferromagnets have been explained in association with
this variation of the amplitude.

Our answer to the above question is stated as follows. One is the difference in damping
mechanism of the magnetic fluctuations. Especially in the case of the itinerant ferromagnets,
the Landau damping mechanism prevails in most of the wave-vector region. Its magnitude is
in general larger for itinerant-electron systems. The spectral shape of the magnetic excitations
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is also different. We have to introduce two independent parametersT0 andTA for the spectral
widths in the energy and wave-vector spaces. They correspond to the single parameterJ of the
exchange coupling of the Heisenberg magnets. Another one is associated with the presence
of large-amplitude quantum fluctuations. We have argued that the qualitative differences in
properties between these two classes of magnets originate from the presence of quantum spin
fluctuations. This means that taking explicit account of the quantum fluctuations is necessary
for the proper theoretical description of weak itinerant-electron magnets. On the other hand,
the amplitude conservation and the predominance of collective magnetic degrees of freedom
are common to Heisenberg magnet and itinerant-electron systems.

In summary, the following consequences are all derived from our theoretical studies by
taking explicit account of the effects as stated above:

• The magnetic equation of state is mainly determined by the response of the spin
fluctuations to the external magnetic field. This is true even in the ground state. Therefore
the non-linear expansion coefficientsF1 of the magnetic free energy are determined by
the spectral properties of spin fluctuations.

• Scaling behaviour is predicted for the temperature dependence of the magnetic
susceptibility as well as various properties in the ordered state. We showed for instance
that the ratioσe/σs is almost uniquely determined by the single parameterTc/T0.

• At the critical temperature, we predicted the critical magnetization processH ∝ M5.
• We can establish a prescription for calculating the temperature dependence of the

spontaneous magnetic moments belowTc. The magnetic equation of state is also
calculated rather easily throughout a wide temperature range without dealing with
complicated integro-differential equations.

• We derived an explicitt2-dependence on temperature of the squared spontaneous
magnetizationσ 2 at low temperature and a [1− (t/tc)

4/3]-dependence around the
critical temperature, including their precise numerical coefficients, that agree well with
experiments.

• We must be careful to note that the real critical [1− (t/tc)
4/3]-behaviour occurs in a very

restricted region aroundtc for compounds with smallertc.
• We showed that theT 2-dependence ofσ 2 at low temperature is observed over a wider

temperature range for compounds with largertc-values.
• TheT 3/2-dependence ofσ 2 due to the spin wave is generally confined to the region of

extremely low temperature for weak itinerant ferromagnets.
• The fourth-order expansion coefficientF1 of the free energy shows a temperature

dependence (t2-dependence at low temperature and [1− (t/tc)
4/3]-dependence around

the critical temperature) that is of the same form as that on the magnetization. In our
theoretical framework this parameter is therefore no longer a constant. On the other hand,
it has the meaning of an important theoretical input parameter in the SCR theory that
gives the non-linear mode–mode coupling among various thermal spin fluctuation modes.

In the present paper we are only concerned with the magnetic properties of the system.
The results of the present paper will have some significant consequences for the various
related properties. For instance, the metamagnetic transitions observed in itinerant-electron
magnets are usually treated in terms of the magnetic equation of state obtained by assuming
a single-particle density-of-states curveρ(ε). If our arguments are valid, we have instead to
take into account the effects of magnetic excitations on the equation of states. Especially in
describing the states with small moments before the metamagnetic transition, theM–H curve
is instead governed by the spin fluctuation mechanism. The validity of the present picture
on the magnetic equation of states is clearly exhibited by the recent non-linear magnetization
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measurements on the semiconducting compound FeSi (Koyamaet al 2000). TheM–H curve
derived by using the density-of-states curveρ(ε) gives the wrong sign for the fourth expansion
coefficientF1 The observed qualitative behaviours are in accord with our present mechanism
(Takahashi 1998, Takahashiet al 2000). Because of the Maxwell relation, our temperature and
field dependences of the magnetic moments are also closely related to the field dependence of
the magnetic specific heat.
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